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READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model. Detailed information is
available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

◦ Smoking History Generator Component

◦ Population Component

◦ Risk Factors Component

◦ Smoking Generator Component

◦ Natural History Component

◦ Screening Component

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Specific implementations

◦ Smoking Base Case14Mar06 describes the 14 March 2006 version of our model
assumptions for the Smoking Base Case.

◦ Smoking Base Case16Feb09 describes the 16 February 2009 version of our model
assumptions for the Smoking Base Case.

Key References
A list of references used in the development of the model.
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MODEL PURPOSE

SUMMARY
This document describes the purposes of the MISCAN-lung model and the types of
questions it was designed to answer.

PURPOSE
The MISCAN-lung model is intended to simulate population trends in lung cancer for
comprehensive surveillance of the disease and to estimate the impact of cancer-control
interventions (smoking, diet, screening).

Comprehensive surveillance of population trends in lung cancer
The model is primarily intended to simulate observed trends in incidence and
mortality from lung cancer in the U.S. population in order to investigate to what extent
observed trends can be explained by (earlier) trends in exposure to risk factors, in
particular smoking and diet.

The model is also intended to project trends in lung cancer incidence and mortality to
years of (future) observation not yet reported. Where the simulation of observed trends
concentrates on exposure to risk factors, future trends may be influenced also by trends
in screening and therapy.

Evaluation of interventions
The model can simulate the effects of different intervention scenarios in order to
compare results in terms of population trends as well as health outcomes, including life
years lost due to lung cancer.

More background information on the purposes and aims the model can be found
under Model Overview, which also provides a model description including its
limitations.
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MODEL OVERVIEW

SUMMARY
This document provides an overview of purpose and background of the MISCAN-lung
model for lung cancer surveillance and offers a brief description of the model.
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PURPOSE
The MISCAN-lung model is primarily intended for surveillance of population trends
in lung cancer and secondarily for evaluation of interventions, particularly concerning
smoking and screening.

MISCAN-lung includes the complete lung cancer chain of events, from behavior- and
diet-related risk factors to death from lung cancer (see Figure 1) in order to facilitate
evaluation of the influences on population trends and of effects of interventions.

Causal chain

Erasmus MC (Lung)
Model Overview
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BACKGROUND
Information on aspects of lung cancer that make modeling important is given in
Background Information Model Overview. This includes the influence of smoking as
the main risk factor for the disease, the process of carcinogenesis, and the importance
of screening as even new therapies still seem to have limited effect on advanced stage
disease commonly present at diagnosis.

MODEL DESCRIPTION

The system that is modeled
MISCAN-lung models a human population consisting of individual life histories, in
which lung cancer may develop.
The life histories consist of (see Figure 2):

• Exposure to risk factors, particularly smoke and diet.

• Carcinogenesis as influenced by risk factors.

• Timing of diagnosis of lung cancer.

• Net survival from lung cancer.

• Influence of screening on time of diagnosis and death.

Risk model

Erasmus MC (Lung)
Model Overview
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Figure 2: Individual life histories are created with events drawn from probability
distributions. A life history starts with a birth date and assigning gender/ethnicity. Age
of death from causes other than lung cancer is determined from a life table without this
specific disease. Then the birth date and gender/ethnicity dependent smoking history is
generated, i.e. starting age, stopping age and smoking intensity in between those time
points. Likewise, time points are determined at which dietary risk changes. The steps
in risk level are combined. The corresponding age-specific risk factors are applied to
modify the initiation hazard and promotion and malignant transfer rates in the
multistage carcinogenesis model. As a result, a malignant nodule may appear which,
after progression to a clinically diagnosed lung cancer (see Natural History
Component), leads to lung cancer death. (In this sample, before the projected time of
death from other causes.) During progression, the tumor is assumed to be screen-
detectable.

General modeling methodologies
We apply the technique of microsimulation of individual life histories in order to
constitute a relevant population. The life histories are constructed stochastically by
drawing events and development rates from probability distributions in order to
reproduce distributions of personal characteristics over the population.

We developed two modules of MISCAN-lung model: smoking history generator
module for Smoking Base Case (SBC) calculations and Mayo Lung Project (MLP)
module, which is also used to analyze data collected from the Mayo CT screening trial
(MCT). The first module uses the smoking history generator provided by NCI to
determine probability of exposure to risk factors and subsequently, its impact on lung
cancer development, survival, and mortality from other causes. The second module
uses the smoking history data and screening data derived from the MLP or MCT to
determine the effect of smoking and screening on lung cancer development and
survival. The model profile applies to both modules in general. However, descriptions
regarding screening only apply to the MLP module. At places where the two modules
differ, apart from screening, descriptions of both modules are provided.

The primary unit of analysis
MISCAN-lung based estimates and comparisons with observations will be primarily
on population level. By simulating large numbers of individual life histories accurate
modeled statistics are generated for the population that those individuals represent.

Major components of the model
An overview of the major components of the model and their relations is shown in
Component Overview.

Inputs (see also Parameter Overview)
Probability distributions for

• Time of birth.

• Exposure to risk factors;

• Influenced by exposure to risk factors:

Erasmus MC (Lung)
Model Overview

Model Description
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◦ Age of death from causes other than the disease of interest;

◦ Initiation of carcinogenesis;

◦ Promotion or clonal expansion;

◦ Malignant transformation.

• Cell type of lung cancer;

• Influenced by cell type and early detection:

◦ Progression to clinical lung cancer;

◦ Dwelling times by preclinical stage of lung cancer;

◦ Stage distribution at diagnosis;

◦ Net survival from lung cancer, also influenced by stage at diagnosis.

• Compliance with screening.

• Sensitivity of screening test for detection of preclinical cancer.

• Consequences of screen-detection.

Outputs (see also Output Overview)

• Incidence of lung cancer by stage and cell type, mortality from lung cancer and
from other causes, life years in disease states.

• Exposure to screening-tests and test results.

Important limitations of the model

• The most obvious limitation of the model concerns the limitations in knowledge
that inform the model, which regards uncertainty in parameter estimates as well
as in correct interpretation and structural composition of the model.

• The model has a limited amount of detail, particularly when modeling cancer
characteristics.

• The chain of events modeled concentrates on biology and medical interventions in
the disease; behavioral interventions e.g. to reduce exposure to tobacco smoke are
only included in the model as their effect on exposure.

CONTRIBUTORS
The MISCAN-lung model is an extension of the MISCAN model, which has been
developed at the Department of Public Health of Erasmus MC, Rotterdam, the
Netherlands with contributions of several people.

The MISCAN-lung model includes the influence of risk factors. It has been developed
by:
Rob Boer with contributions of:
Shin-Yi Wu, Haijun Tian, Lu Shi, Marjolein van Ballegooijen, Bill McCarthy, Barbara
Berman
programmer of MISCAN extensions:
Floris van Maanen
consultants:
Robert Figlin, Jennifer Malin (until 2004)

Erasmus MC (Lung)
Model Overview
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ASSUMPTION OVERVIEW

SUMMARY
This document describes the assumptions used in the MISCAN-lung model.

BACKGROUND
A comprehensive model for lung cancer surveillance requires assumptions concerning
the following aspects:

• Demography.

• Risk factor exposure.

• Risk factor exposure-effect relationships.

• Preclinical lung cancer.

• Screening.

• Clinical lung cancer.

• Lung cancer survival.

• Mortality from causes other than lung cancer.

The model aspects that are directly observable require the least model specific
assumptions. Demography and mortality from other causes are generally observed
quite accurately. However, when mortality from other causes needs to be
distinguished by exposure to risk factors, e.g. smoking status, which is not directly
observed in the U.S. population, there is already need for specific model assumptions.

Clinical lung cancer and its survival can be observed directly. However, often direct
observations of survival as well as exposure to risk factors are not available. Therefore
relevant assumptions are needed.

Exposure to risk factors is directly observable, but observation of the long term effects
of such exposure is much more difficult. Therefore, surveillance of trends in recent
history still requires data on exposure to risk factors of several decades earlier when
observations were not made. This void can only be resolved by making some
extrapolations from more recent observations.

The most typical assumptions for our model concern the aspects: Risk factor exposure-
effect relationships, preclinical lung cancer, and screening where interpretation of
observations takes place through (formal or informal) model assumptions.

ASSUMPTION LISTING

Demography
Demography assumptions focus on the population characteristics including gender,
race/ethnicity, and age distribution. (see also Population Component)

Our model does not assume any entry or exit from the population due to migration.
This is generally not a problem when studying a research cohort but to some extent it is
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when studying a geographically defined dynamic population.

The primary purpose of our model is to study population trends in a geographically
defined dynamic population, viz. the U.S. population. As long as we study a limited
time period during which the population does not change substantially due to
migration, and when risk factor exposure is measured retrospectively, e.g. by
contemporary survey on smoking history, then the problem of migration is very
limited: We simulate a births distribution that (in conjunction with modeled mortality)
reproduces the demography during the period of the study. The simulated births will
not accurately represent actual birth statistics in the U.S. but rather concern births of
people who are alive in the U.S. during the study period. In the model, at times long
before the period of interest in the study, the simulated population will then be larger
than the actual U.S. population at those times. In other words, immigrants are modeled
as being born in the U.S.

Risk factor exposure
In general we rely on self-reported exposure to risk factors, which tends to be not very
accurate, and on a limited number of questions to characterize exposure history.
Therefore, we should assume that there is a substantial amount of uncertainty
concerning risk factor exposure. In a non-linear system, such as the effects of risk
factors on lung cancer risk, this uncertainty may lead to incorrect estimates but an
investigation into this potential problem did not show inaccuracies that would lead to

faulty inference in our project.1

Risk factor exposure-effect relationships

We adapted the Moolgavkar model on multistage carcinogenesis2,3 for use within our
existing MISCAN microsimulation model (see also Risk Factors Component).
Validation of the original Moolgavkar model for smoking and lung cancer is described

elsewhere.3

Our adaptation for microsimulation concerns the very early stage: The Moolgavkar
model assumes that , after initiation of a stem cell, there is a stochastic process where
an initiated cell can form an additional initiated cell, differentiate, or die. The vast
majority of initiations does not lead to a clone of initiated cells with any slight chance
of malignant transformation. In a microsimulation model this would imply the need to
simulate many initiations that only die out within a quite limited period of time,
adding a lot of computing time with no effect on risk projections. Therefore, our model
only simulates initiations that grow out to a clone of initiated cells that is large enough
to have surpassed the stage in which stochastic death or differentiation of individual
cells can lead to the end of the whole clone.

Erasmus MC (Lung)
Assumption Overview

Assumption Listing
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Preclinical lung cancer
Although risk factors can influence all stages of the TSCE model, it is generally
assumed that the stage of progression from malignant transformation to clinical cancer
is not influenced as strongly by risk factors as the earlier stages of carcinogenesis.
We replaced the progression part of the TSCE model with a natural history model of
lung cancer. (see Natural History Component)
We assumed a model structure for preclinical lung cancer that is similar to model

structures that we have used for the evaluation of screening of other cancers.4,5,6,7,8,9

The model assumes that (at least during the screen-detectable period) lung cancer is
one of three cell types: squamous cell, adeno/large cell, or small cell carcinoma and that
it progresses from preclinical stage I-II to clinical diagnosis in stage I-II ,or to preclinical
stage III-IV and then to clinical diagnosis in stage III-IV.

Of the four main cell types in which lung cancer is generally categorized, we joined
adenocarcinoma and large cell carcinoma because we considered that there may be a
nonnegligible probability of adenocarcinoma developing into large cell carcinoma
during the
screen-detectable period.

Screening

Screening Model

Erasmus MC (Lung)
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(a) Distribution of births over calendar time. (b) Distribution of death from other causes over
age. (c) Distribution of start of screen-detectable preclinical period over age. Dwelling time
distributions of each preclinical disease state. Transition probabilities to diagnosis versus
progression to next preclinical disease state. (d) Age specific incidence depends on distribution
of start of screen-detectable preclinical period and dwelling time distributions of preclinical
disease states. Stage distribution depends on transition probabilities to diagnosis versus
progression to next preclinical disease state. (e) Net survival distribution from diagnosis to
death from lung cancer. (f) Mortality from lung cancer depends on incidence, survival and
mortality from other causes. (g) Screening defined by times of screening, compliance (two
possible mechanisms for timing/compliance), and sensitivity and specificity of screening test.
(h) Effect of early detection can be defined by several mechanisms such as probability by screen-
detected stage of extending life from death of lung cancer to death of another cause.

We assume a preclinical lung cancer may be detected by screening, depending on the
screening-test (see Screening Component). The screening-test is assumed to have a
probability of systematic error, in which a preclinical cancer will always be missed due
to personal, lesion, or test moment factors. If a preclinical cancer is not missed by
systematic error, then it has a probability to be detected depending on the sensitivity of
the screening-test. The sensitivity of a screen-test varies by the stage (I-II or III-IV) and
type (squamous cell, adeno/large cell, or small cell) of the cancer development.
When a screening is offered, some people will accept it while others will not. In our
model we assume that the reach of screening is determined by two factors: 1) whether
a screening is a first screening or a repeated screening in a trial, and 2) whether the
person attended or missed the previous screening.
There are several possibilities to simulate the consequences of early detection of lung
cancer by screening, the most important of which are: no change in time of death; cure
from lung cancer (defined by dying at the time originally simulated for death from
causes other than
lung cancer); or a new survival distribution. As mentioned in section "Lung cancer
survival" below, we currently have two alternative assumptions for MLP and MCT:
maintain the cell type and stage specific survival curves for screen-detected cases so
that any improvement just results from detection in an earlier stage, or assume 40%
cure of screen-detected stage II cancer.

Clinical lung cancer
According to the multistage carcinogenesis model, after malignant conversion occurs,
cellular growth is further deregulated and proceeds uncontrolled. This period in

Erasmus MC (Lung)
Assumption Overview

Assumption Listing

Page 13 of 288 All material © Copyright 2003-2011 CISNET



carcinogenesis development can further be divided into preclinical lung cancer,
including invasive stages, and clinical lung cancer (Natural History Component). As
previously described, preclinical lung cancer can only be screen-detected, but clinical
lung cancer can be both screen-detected and clinically detected. Our model structure
for clinical lung cancer is similar to the model structures described in section
“Preclinical lung cancer” above in order to correspond with the SEER registry; that is,
the model assumes that lung cancer is one of three cell types: squamous cell, adeno/
large cell, or small cell carcinoma and that it progresses from preclinical stage I-II to
clinical stage I-II, or to preclinical stage III-IV and then to clinical stage III-IV. The
clinical detectability is determined by the carcinogenesis model, and the lung cancer
survival is described below in section “Lung cancer survival”.

Lung cancer survival
After clinical diagnosis we assume a net survival distribution based on SEER by stage
category and cell type. In reality the studied population (e.g. the U.S. population) may
have a different survival distribution than observed in SEER but we expect that any
such differences have a relatively small effect on mortality.

Survival after screen-detection can be modeled in different ways. For the MLP module
we made two different sets of tentative assumptions:

• In case of screen-detection a new survival distribution is started that follows the
same survival distribution by cell type and by stage category as when clinically
diagnosed but the survival curve, starting from the date of early diagnosis,
possibly concerns an earlier stage category with a more favorable survival.

• Persons with a screen-detected lung cancer in stage I-II that would be fatal in the
situation without screening, receive a probability of 40% of not dying from lung
cancer (therefore dying from other causes at a later time), and all other cases die at
the same time and from the same cause as in the situation without screening. This
assumption gives a reasonably close similarity of observed and modeled survival
in MLP.

Mortality from causes other than lung cancer
We assume that death from lung cancer and death from other causes are independent,
and modeled two ways of mortality from other causes. In our MLP module, mortality
from causes other than lung cancer is assumed to depend on exposure to risk factors.
We assume a Gompertz distribution in case of constant exposure to risk factors where
both the exponential growth rate in the Gompertz hazard model and the immediate
hazard itself can depend on concurrent exposure to risk factors. By this mechanism
smokers, for example, can have a higher relative risk of mortality from other causes,
including a gradual moderation of the increased relative risk when quitting smoking.
Alternatively, in the smoking history generator module (Smoking Generator
Component), mortality from other causes is governed by the smoking history
generator (developed by NCI), which gives the probability of death from other causes
for each year and each birth cohort by smoking status.

Erasmus MC (Lung)
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PARAMETER OVERVIEW

SUMMARY
This document provides an overview of the parameters used to quantify the MISCAN-
lung model for lung cancer surveillance.

BACKGROUND
The MISCAN-lung model uses four types of parameters:

• Demography parameters.

• Risk factors parameters.

• Natural history parameters.

• Screening parameters.

Currently, treatment parameters have not been modeled but they will be considered in
the near future.

PARAMETER LISTING OVERVIEW

Demography Parameters (see also Population Component)

• Births:

a. Number of birth cohorts;

b. Distribution of the population among the birth cohorts;

c. For each birth cohort parameters of its birth table to give the period of dates of
birth within the birth cohort;

d. For each birth cohort the parameters of its life table.

• Stratification of birth cohorts by gender and race/ethnicity.
• Mortality from other causes, either as:

a. Parameters for the exponential growth rate of the hazard and the baseline
hazard for death from other causes, and the dose effect relationships of risk
factors on that exponential growth rate and immediate hazard;

b. When mortality from other causes is governed by the smoking history generator
(Smoking Generator Component): the probability of death from other causes for
each year and each birth cohort by smoking status.

Risk Factors Parameters (see also Risk Factors Component)

• Number of risk factors: smoking and/or diet, with option of additional risk factor.

• Number of risk levels for each risk factor.

• Risk exposure (e.g., smoking, diet risk) over time at different risk levels.

• Hazards of multistage carcinogenesis as the dose effect relationships of risk factors
on initiation, promotion, and malignant transformation.

Natural History Parameters (see also Natural History Component)
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• Parameters for the cell type distribution of lung cancer.

• Parameters for the stage distribution of lung cancer.

• Parameters for the initiation, promotion, and malignant transformation of lung
cancer.

• Parameters for duration distribution of screen-detectable disease states after
malignant transformation.

• Parameters for the transition probability from each stage.

• Parameters for net survival from lung cancer after clinical diagnosis by stage of the
cancer.

Screening Test Parameters (see also Screening Component)

• Parameters for screening policy, e.g., timing and dissemination of screening (e.g.
start age, end age, screening interval, adherence to screening).

• Sensitivity of a screening test.

• Systemic error of a screening test.

• Parameters for consequence of screening after screen-detected diagnosis:

a. Probability of dying from other causes due to early detection by screening;

b. Survival benefit due to early detection by screening.

• Parameters for an individual's screening behavior/adherence:

a. Probability of screening acceptance by screening type (initial vs. repeat
screening);

b. Probability of screening acceptance by previous screening acceptance.

Summary table

Erasmus MC (Lung)
Parameter Overview
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The following table summarizes parameter name, validation criteria, and its use for lung cancer
surveillance in the MISCAN-lung model.

Parameters Validation Surveillance

DEMOGRAPHY

Births: Reproducing age distribution of the study cohort. Reproducing age distribution of

U.S. population.

Stratification: Distribution over gender and race/ethnicity as in study

cohort.

Distribution over gender and

race/ethnicity of U.S. population.

Mortality from other

causes:

Correlation between durations, rate ratios of concurrent

smoking for mortality hazard and increase rate of hazard

in Gompertz distribution reproducing rate ratios of CPS.

--

RISK FACTORS

Smoking exposure

over time:

Reconstructed from smoking history at enrollment in

study.

Reconstructed from U.S. survey

data.

Dietary risk over

time:

Assuming average dietary risk distribution unless dietary

history is available in study data.

Reconstructed from U.S. survey

data.

Hazards of multistage

carcinogenesis - Dose

effect relationships:

Reproducing dose effect relationships estimated with the

Moolgavkar model from CPS I and II, British Doctors

Cohort and Nurses' Health Study.

--

NATURAL HISTORY

Cell-type distribution

of lung cancer:

Reproducing distribution over squamous cell; adeno +

large cell; and small cell carcinoma in the study cohort.

Reproducing distribution over

squamous cell; adeno + large cell;

and small cell carcinoma in SEER.

Stages of lung cancer: Reproducing distribution over stage II or earlier and stage

III or later in the study cohort, where available in control

group.

Reproducing distribution over

stage II or earlier and stage III or

later in SEER.

Duration distribution

of screen-detectable

disease states:

Based on earlier model based estimates from screening

studies including the Mayo Clinic Trial.

--

Transitions from each

stage:

Based on stage distribution of lung cancer in unscreened

study cohort after preclinical phase.

Based on clinical stage

distribution of lung cancer in

SEER.

Net survival from

lung cancer:

Based on SEER disease-specific survival. --

SCREENING

Test sensitivity: Based on earlier model based estimates from screening

studies including the Mayo Clinic Trial.

--

Timing of screening: As reported from the study. As reported from surveys.

Consequence of

screening:

Based on expert opinion and a range based on confidence

limits for improvement of prognosis model parameters for

screening trial data.

--
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COMPONENT OVERVIEW

SUMMARY
An overview of the five major components in the MISCAN-lung model for lung cancer
surveillance.

OVERVIEW
The MISCAN-lung model contains five primary components: population, risk factors,
smoking generator, natural history, and screening.

Components overview

COMPONENT LISTING
The MISCAN-lung model consists of five major components.

1. Population Component: This component simulates a population of individual
life histories, according to the demography and mortality from other causes
assumptions and their parameters. Each individual in the population consists of
a date of birth and an age of death.

2. Risk Factors Component: This component simulates how risk factors (such as
smoking and diet) influence the hazard growth rate of lung cancer according to
the exposure and exposure-effect relationships assumptions (see Assumption
Overview) and their parameters (see Parameter Overview).

3. Smoking Generator Component: This component takes data from NCI's
smoking generator and simulates the smoking history of an individual and
deaths from other causes. In case this component is activated, it replaces the first
risk factor in the risk factors component and the simulation of deaths from other
causes in the population component.
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4. Natural History Component: Subsequently, the natural history part of MISCAN-
lung simulates separate lung cancer histories (natural histories) for each
individual life history. The initiation, promotion, malignant transformation, and
progression of lung cancer are generated according to an individual's exposure
to risk factors (smoking and diet). The development of lung cancer into different
cell types and stages is governed by the natural history assumptions (see
Assumption Overview) and their parameters (see Parameter Overview). The
survival of a person, once a preclinical lesion has developed into clinical lung
cancer, depends on the cancer cell type and stage of disease. The life history of
each person is altered according to the natural history that is simulated for that
person. If he or she dies from lung cancer before he or she dies from other
causes, his/her death age is adjusted accordingly.

5. Screening Component: After simulating the natural history if screening were
absent, the screening component makes detection of preclinical lung cancer
possible. Timing of screenings can follow an invitational schedule or an
opportunistic pattern. Screening in the model potentially affects early stages (I
and II) of all preclinical lung cancer, resulting in either a cure or a new survival
upon screen-detection. The effectiveness of screening depends on the screening
assumptions (see Assumption Overview) and their parameters (see Parameter
Overview).
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SMOKING HISTORY GENERATOR
COMPONENT

SUMMARY
The smoking history generator (SHG) is a shared precursor micro-simulation model
that produces cohort-specific smoking histories and deaths due to causes other than
lung cancer as inputs for the dose-response models used by members of the CISNET
lung cancer consortium.

OVERVIEW
The core SHG software was parameterized using three tobacco control scenarios to
produce the requisite input data for the models. The first, called the actual tobacco
control (ATC) scenario, is a quantitative description of actual smoking behaviors of
males and females born in the United States between 1890 and 1984. The second, called
no tobacco control (NTC), is a quantitative description of predicted smoking behaviors
of males and females in the United States under the assumption that tobacco control
efforts starting mid-century had never been implemented. The third, called complete
tobacco control (CTC), is a quantitative description of predicted smoking behaviors of
males and females in the United States under the assumption that tobacco control
activities yielded perfect compliance, with all cigarette smoking coming to an end in
the mid-sixties. The ATC scenario used inputs derived directly from observed data in
the National Health Interview Surveys (NHIS) and the Substance Abuse and Mental
Health Services Administration (SAMHSA) National Survey on Drug Use and Health.
The NTC scenario used inputs derived by extrapolating from trends in the observed
histories before 1954, i.e., before any tobacco control in the decade leading up to the
publication of the Surgeon General's Report in 1964. The CTC scenario was simulated
by setting cessation rates to one (i.e., transferring all current smokers to former
smokers) and allowing no further initiation starting in 1965 while using the observed
values in earlier years.

DETAIL
The SHG accepts parameters supportive of the three tobacco control scenarios
described above (see Table SGH-I below). The ATC scenario uses initiation, cessation
and smoking intensity (CPD) rates directly derived from the NHIS and SAMHSA
datasets. The NTC scenario uses initiation and cessation rates derived by fitting an age-
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period-cohort model to the ATC rates upto 1954, i.e., before the apperance of any
tobacco control measures, and by projecting those into the future maintaining them
consistent with the patterns observed in 1954. The CTC scenario uses initiation and
cessation rates identical to those of the ATC scenario upto 1965, and then sets the
cessation rates equal to one and the initiation rates equal to zero, i.e., all smokers are
forced to quit in 1965, and no new smokers are allowed to appear thereafter. All
scenarios use smoking dependent other cause mortality (OCD) rates derived from
several sources as mentioned above.

Computational process in the usage of the SHG

The CISNET SHG is implemented in C++ and consists of a single simulation class, that
receives file system paths to five parameter files, four integer pseudorandom number
generator (PRNG) seeds, and an optional immediate smoking cessation year
parameter. The SHG simulation class employs four independent random selection
processes that are implemented via a class-based wrapper of the Mersenne Twister

PRNG.1

Here we briefly describe the outline for computational process in the usage of the SHG:

1. Initialization

a. Load input data

b. Initialize random number streams

3. Start Simulation

a. Validate inputs

b. Determine Initiation Age (if any)

c. Determine Cessation Age (if any)

d. Compute cigarettes smoked per day (CPD) vector for those who initiate

1. Determine smoking intensity group (based on initiation age)

2. Determine CPD based on smoking intensity and age at initiation

3. Determine uptake period and attenuate CPD during uptake period

4. Generate CPD vector from initiation to cessation or simulation cutoff

e. Compute other cause of death (OCD) age

5. Write individual outputs

6. Loop simulation if repeats are specified
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RELEVANT PARAMETERS
The SHG utilizes input data from several sources: the NHIS data from 1965 to 2001, the
SAMHSA data, the Berkeley mortality database cohort life-tables, the National Center
for Health Statistics (NCHS), the Cancer Prevention Study I and II (CPS-I and CPS-II),
and the Nutrition follow-up studies sponsored by the American Cancer Society. The
NHIS and the SAMHSA datasets provide estimates for prevalence of never, former (by
years quit) and current smokers by age and year, and data on smoking intensity (in
terms of the average number of cigarettes smoked per day (CPD)). These data were
used to create implicit initiation and cessation rates. Using the average initiation rate,
the SHG is able to determine the likelihood that a never smoker becomes a smoker. For
those individuals that are smokers, the cessation rates are used to determine the
likelihood that a smoker becomes an ex-smoker. The Berkeley life-tables, combined
with smoking prevalence estimates from NHIS and the relative risks of death for
smokers and former smokers in comparison to never smokers from CPS-I and CPS-II,
are used to produce the probability of death from causes other than lung cancer based
on age, sex, birth cohort, and smoking status. Table SHG-I summarizes the input
source for the SHG for the three CISNET tobacco control scenarios.

Table SHG-I

Inpupt ATC NTC CTC

Initiation rates NHIS Derived Derived

(no new smokers after 1965)

Cessation rates NHIS Derived Derived

(all smokers quit in 1965)

CPD1 NHIS,SMAHSA

OCD2 Berkely life-tables, NCHS, NHIS, CPS-I, CPS-III, Nutrition Follow-up studies

Birth year

(1890-1984)

User Defined

Gender

(Male/Female)

User Defined

Race

(All race)

User Defined

1 Cigarettes smoked per day,2Other Cause of Death

ATC: actual tobacco control, NTC: no tobacco control, CTC: complete tobacco control.
To simulate life histories for individuals using the SHG, for any given run, the
following parameters must be provided:
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Table SHG-II

Parameter Valid Values

Seed value for PRNG used for Initiation, Cessation, OCD1, Smoking

intensity quintile

Integer from -1 to 2147483647

(A value of -1 uses the clock time as the

seed)

Race 0 = All Races

Sex 0=Male, 1=Female

Year of Birth Integer from 1890 to 1984

Immediate Cessation year2 0 or Integer from 1910 to 2000

Repeat3 Integer >1 (number of times to repeat

simulation)

File paths to Initiation,Cessation, OCD,

Smoking intensity quintile and CPD4 data files

As derived from NHIS depending on the

scenario

1Other cause of death, 2 This variable is set to 0 except for CTC scenario. To apply immediate smoking

cessation for CTC scenario, the year for immediate cessation must be supplied to the simulator. If the year

value supplied is 0, immediate cessation will not be used in the run. If a year value is supplied, immediate

cessation will occur on January 1st of year provided. 3Key is optional and can be excluded. If the Repeat value

is included and is not a vector value, each set of parameters will be repeated by the amount specified. If the

Repeat value is included and is a vector value, the repeat value will pertain to the value set that it corresponds

to. 4Cigarettes smoked per day.

DEPENDENT OUTPUTS
The inputs of the SHG are used to simulate life histories (up to age 84) for individuals
born in the United States between 1890 and 1984. These life histories include a birth
year, and age at death from causes other than lung cancer, conditioned on smoking
histories. For each simulated individual, the generated life histories include whether
the individual was a smoker or not and, if a smoker, the age at smoking initiation, the
smoking intensity in cigarettes per day (CPD) by age, and the age of smoking
cessation. Smoking relapse, the probability that a former smoker starts smoking again,
is not modeled. Table SHG-III summarizes the output of the SHG. Fig. SHG-1 shows
two examples of smoking histories simulated by the SHG; a) an individual born in 1910
who begins smoking at age 17, quits at age 56 and dies at age 67 due to causes other
than lung cancer, and b) an individual born in 1920 who begins smoking at age 22 and
dies at age 53 due to causes other than lung cancer.

Table SHG-III

Table SHG-III

Initiation Age Age at smoking initiation

Cessation Age Age at smoking cessation

OCD1 Age Age at death from cause other than lung cancer

Smoking

History

Smoking intensity quintile (5 quintiles ranging from light to heavy smoking), Yearly smoking dose

(CPD2)

1Other cause of death, 2Cigarettes smoked per day.
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Figure SHG-1: Examples of the SHG-Generated Events

Simulation results by the SHG can be formatted in four different ways:

1. Text (formatted, human readable text depicting smoking history);

2. Tab Delimited Data (plain text, suitable for post-processing);

3. Annotated text-based timeline (visual representation in text);

4. XML (plain text, suitable for parsing). The outputs from the SHG are made up of
individual life histories, each of which includes the following variables: birth
year, age of smoking initiation, the corresponding smoking intensity (CPD) by
age, age of smoking cessation, and age at death from causes other than lung
cancer, conditioned on smoking histories.

REFERENCES:
1 Matsumoto M., Nishimura T. “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator.” in ACM
Transactions on Modeling and Computer Simulation 1998; 8: 1: 3-30
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POPULATION COMPONENT

SUMMARY
This document gives a description of how the simulated population is modeled.

OVERVIEW
The model simulates a dynamic population by generating births according to a
distribution over calendar time, e.g. the relative sizes of birth year bins of persons in a
specified study.
Stratification on the basis of specific subpopulation characteristics is possible.
The general population model includes mortality from other causes that can depend on
exposure to risk factors.
However, in the Smoking Base Case, mortality from other causes is determined by the
smoking history generator (see Smoking Generator Component).
Thus, a population consists of individuals whose life histories in the absence of lung
cancer begin with a date of birth and end on a date of death from other causes.

QUANTITATIVE DESCRIPTION
The MISCAN-lung code is an individual-based microsimulator. Life histories are
determined by random draws from probability distributions (Monte Carlo simulation)
for allocation to categories (e.g. birth year cohort) or selecting time to event (e.g. death
from other causes).

POPULATION DYNAMICS
The MISCAN-lung code models the population by simulating individuals from birth to
death from disease or death from other causes. Distribution across birth year bins must
be defined at input. Age distributions in specific calendar years can be computed at
output.

RECURRENCE
During the life history of an individual person multiple clones of malignant cells may
be created, which each will progress through various states of disease from preclinical
to clinical lung cancer. (Also see Risk Factors Component and Natural History
Component.)

DISEASE DISTRIBUTION
In the MISCAN-lung model the lung cancer stages I and II are combined into stage 2-,
and the stages III and IV into 3+.
Three lung cancer cell types are distinguished, i.e. small cell carcinoma, squamous cell
carcinoma, and combined adeno / large cell carcinoma.
Upon creation of a malignant nodule (clone of malignant cells) the decision about cell
type is made according to clinically observed fractions. (Also see Natural History
Component.)

RELEVANT ASSUMPTIONS
See sections
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▪ Demography;

▪ Preclinical lung cancer;

▪ Clinical lung cancer;

▪ Lung cancer survival;

▪ Mortality from causes other than lung cancer;

in Assumption Overview.

RELEVANT PARAMETERS
See Demography and Natural History parameters in Parameter Overview.
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RISK FACTORS COMPONENT

SUMMARY
This document describes how MISCAN-lung models carcinogenesis and the influence
of risk factors on this process.

OVERVIEW

Multistage carcinogenesis

The multistage carcinogenesis model as developed by Moolgavkar et al.1,2 consists of
the following stages:

• Initiation of stem cells: One or more mutations result in an initiated cell that
partially escapes growth control.

• Clonal expansion of initiated cells: The single initiated cell develops into a clone of
initiated cells.

• Malignant transformation: Each of the initiated cells in an expanding clone can
acquire further mutational changes leading to a malignant cell.

• Progression to diagnosis: Malignant cells develop into a symptomatic cancer.

An initiated cell multiplies at a fairly high rate, but there is an almost as high rate of
cell death or differentiation. The latter implies, similarly to cell death, the end of the
malignant potential of the cell. The model assumes that multiplication and death/
differentiation are stochastic processes; therefore, the large majority of clones die out
because there happened to be one more cell death/differentiation than reproduction of
initiated cells. These clones contribute practically nothing to the cancer risk. A
relatively small number of clones of initiated cells succeeds in growing to a substantial
size, by which it is unlikely to die out. These clones follow a slow but sure path to
containing a large number of initiated cells, making it more likely that one of the
initiated cells undergoes malignant transformation.

Each cell in a clone of initiated cells has a hazard of malignant transformation. Because
the clones increase in numbers of initiated cells, the hazard of malignant
transformation in a clone increases over time. At a certain moment the number of cells
is so large that the stochastic element doesn't play a significant role any more. A
constant rate of generation of new initiated cells implies that the growth of an
expanding clone is exponential. Because they are the clones that produce more initiated
cells than cell deaths or differentiations, the clones that lead to cancer grow faster
during the earlier stage of development. That implies that the time distribution from
initiation to malignancy has a clear mode, which is generally estimated to be at a
distance of several decades.

After malignant transformation, there is a stage of progression of the cancer until it is
developed far enough to be diagnosed.

Contrary to the original Moolgavkar model, MISCAN-lung disregards the clones of
initiated cells that die out early in their development. The shape of the distribution of
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the period of clonal expansion to malignant transformation determines that in the first
several decades of their lives people rarely get cancer. There is a steep increase in risk
of cancer by age that reflects mainly the steepness of dwelling time distribution of
clonal expansion to malignant transformation. When most of the clones that were
initiated very early in life have come through as cancer, the slope of increase in cancer
risk levels off. Hence the slope of increase in cancer risk at higher ages reflects to large
extent the increase in the rate of initiation.

Risk Factors
Risk factors can influence initiation, clonal expansion (promotion), malignant
transformation, and progression.

If a risk factor influences the rate of initiation, it will take a very long time before there
is a substantial influence on cancer incidence because the stage of clonal expansion
must be passed through before becoming a cancer.

If e.g. the rate of clonal expansion is reduced by half, then the rate of malignant
transformation starts decreasing immediately. The subsequent period of progression
from malignant cell to diagnosed cancer makes the influence on cancer incidence
somewhat less immediate.

A change in a risk factor that leads to e.g. a reduction by half of the rate of malignant
transformation has a more immediate effect on malignant transformation, but in the
end only postpones the appearance of cancer by one doubling time of a clone of
initiated cells; if the doubling time of cancer incidence is less than the doubling time of
a clone of initiated cells, the rate ratio for malignant transformation decreases over time
since change of the risk factor.

It is generally assumed that the stage of progression from malignant transformation to
clinical cancer is not influenced as strongly by risk factors as the earlier stages of
carcinogenesis.

IMPLEMENTATION OF THE RISK FACTORS MODEL

Input parameters

1. Parameters for carcinogenesis in absence of risk factors

For each stratum the model specification consists of:

• The number of cells that start an initiated close. This is generally larger than 1 in
order to adjust for the higher initial growth rate of surviving clones.

• Basic rate of initiation.

• Basic rate of proliferation of a clone of initiated cells, also called: promotion.

• Basic rate of malignant transformation.

• Basic growth rate of cancer, also called: progression.

2. Risk Factors
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MISCAN-lung can model up to 5 different explicit risk factors, each with up to 10
levels of exposure. For each stratum and risk factor the model specification consists of:

• The probability of starting at a risk level (thus, up to 10 probabilities of exposure
intensity).

• The probability matrix of transition from the current level of exposure to the next
risk level.

• For each current risk level:

- The dwelling time distribution to first change of risk level.
- The dwelling time distribution to second change of risk level.
- The dwelling time distribution to third or later change of risk level.

Alternatively, the model for exposure to the first risk factor (= smoking) can be
replaced by the smoking history generator (see Smoking Generator Component).

3. Dose effect relationships

For each risk factor and each level of exposure the model specification consists of the
factor by which the rates of initiation, promotion, malignant transformation, and
progression are adjusted at the time of exposure to the given level of the given risk
factor.

Computation
The life history is split up into segments during which there is no change in the level of
exposure to any of the risk factors. For each of these segments, the adjustment factor
resulting from exposure to all of the risk factors is determined and applied to the rates
of initiation, promotion, malignant transformation, and progression.
The rate of initiation of new clones is constant during each segment of constant risk
factor exposure and is adjusted when exposure changes.
The current clone size, is initiated with the specified number of cells that start an
initiated clone.
The time to malignant transformation is determined iteratively as follows:
The proliferation rate of the clone of initiated cells, given current exposure to risk
factors, is ; and the malignant transformation rate per initiated cell is .
Let be a draw from the standard uniform distribution.
Then it is determined if the following period of time is shorter than the length, of the
current segment of constant exposure to risk factors:

If so, then the time of malignant transformation is reached; if not, the clone size is
updated to the value at the end of the current segment of constant exposure to risk
factors: becomes

The iterations are repeated for subsequent segments of constant exposure to risk
factors until the moment of malignant transformation or the maximum life span is
reached.

Progression from malignant transformation to clinical diagnosis and time from birth to
death from causes other than lung cancer are determined similarly.
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REFERENCES:
1 Moolgavkar, S.H., Knudson, A.G. “Mutation and cancer: A model for human

carcinogenesis.” in J Natl Cancer Inst 1981; 66: : 1037-1052
2 Hazelton, W.D., Clements, M.S., Moolgavkar, S.H. “Multistage carcinogenesis and

lung cancer mortality in three cohorts.” in Cancer Epidemiol Biomarkers Prev.
2005; 14: 5: 1171-81
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SMOKING GENERATOR COMPONENT

SUMMARY
This document describes how data from the NCI's Smoking History Generator
Application is used within the MISCAN-lung model.

OVERVIEW
The Smoking History Generator Application has been developed by NCI staff for the
CISNET program, based on NHIS data on the U.S. population.
The original MISCAN-lung model structure for determining exposure to the first risk
factor (i.e. smoking) was replaced to accommodate the optional use of data from the
Smoking History Generator. Those data are provided in tables, which can be read by
the MISCAN-lung code to produce appropriate random smoking histories for the
individual persons simulated.

The onset of smoking is determined by a table of probability to start smoking by single
year of age, 5-year birth cohort, gender and race (i.e. whites or all races). Cessation of
smoking is determined by a similar table.
The smoking intensity is modeled as cigarettes per day (cpd). First, placement in one of
five smoking intensity categories is determined by a table with a probability
distribution over 5 categories (from light to heavy smoker) by age of initiation.
Subsequently, the number of cigarettes smoked per day is determined using a table of
cpd by year of birth, age, race and gender, and smoking intensity category.

It is assumed that, once a smoker has been assigned to an intensity class, this level of
exposure will remain constant unless the person quits smoking altogether.

For never and current smokers, the time of death from causes other than lung cancer is
determined from a table of other cause death probabilities by race and gender, year of
birth, age, and smoking status (never or current) and intensity (5 categories for current
smokers).
For former smokers, the difference between the ‘current’ and ‘never’ probability for the
person is multiplied by the following excess risk formula,

and added to the ‘never’ probability to obtain the ‘former’ probability.
A thus generated smoking history can be treated as usual input to the risk factors
model (see Risk Factors Component) in order to continue simulation of the
development of lung cancer.

ADDITIONAL REMARKS
For the Smoking Base Case, the functionality of the Smoking History Generator
application has been extended in 2009 by NCI staff.

• Birth years 1890-1900 were added to the tables.
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• Table data were supplied for the counterfactual (No Tobacco Control) scenario,
next to those for the actual (Tobacco Control) scenario.

The additional tables were used just like the original ones in MISCAN-lung.
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NATURAL HISTORY COMPONENT

SUMMARY
This document gives a description of the model processes responsible for generating
the natural history of disease.

OVERVIEW
The model simulates a network of disease states (Figure 4) categorized by the
following dimensions: cell type (squamous cell, adeno/large cell, and small cell
carcinoma); stage (stage I-II and stage III-IV); and clinical status (preclinical, clinically
diagnosed, and screen-detected).

FIGURE 4:

Natural History
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NATURAL HISTORY MODEL
(Figure 4) After initiation of cells in normal state (1) and promotion and malignant
transformation of generic nodules (2), nodular fractions of squamous cell carcinoma
(SQ), adeno plus large cell carcinoma (AL) and small cell carcinoma (SM) appear in
states (3), (4) and (5), respectively. This process is governed by the parameters of the
multistage carcinogenesis model. Lung cancer cell type distribution corresponds with
clinically observed fractions.

Further progression through preclinical states (6-11) occurs, where stage 2- (= I-II) and
stage 3+ (= III-IV) cancers may develop. Progression continues to clinically detectable
cancers in states (12-17), which may result in the person’s death from lung cancer upon
entering state (27).

Branching and dwelling time
Branching fractions and dwelling time distributions determine the time-course of the
state of the progression model. Three types of dwelling time distributions are used to
describe the duration of the stay in one compartment until transition to the next
compartment. They are:

• Weibull distribution, characterized by a mean value and a shape parameter;

• Piecewise linear distribution, consisting of a set of (time point, probability of
transition before this time point) data;

• Fixed duration, i.e. transition after a fixed period of time.

Death from other causes
The simulated person may die from causes other than lung cancer, i.e. entering state
(28), if this event –at a projected time point which was determined during an earlier
step in the model– occurs before progression through the natural history has finished.

Screening
Screening, if performed, may detect cancers in preclinical states (2-11), which means
transfer to corresponding screen-detected states (18-26). No further transition is
modeled.

DISEASE STAGES
The disease stages 2- and 3+ are distinguished as described in the above section
"Natural History Model". As is shown in Figure 4, a stage 2- tumor may become a stage
3+ tumor. At transition time it is decided whether the nodule continues in the next
model state as a stage 2- or stage 3+ tumor. Such branching takes place according to a
fixed fraction parameter (model input).
Time until transition from one state to the next one in the model is determined from
random draws from given dwelling time distributions.
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DISEASE GROWTH
Tumor size is NOT a quantity monitored in MISCAN-lung. Once malignant
transformation has occurred, by which a generic nodule appears in state 2 (Figure 4),
tumor progression continues by stochastic state transitions according to given dwelling
time distributions and branching fractions.

It is assumed that the tumor is detected (clinical diagnosis) the moment the nodule,
now identified as either squamous cell or small cell or adeno/large cell carcinoma,
enters one of the clinical states (12 through 17 in Figure 4).

DISEASE EVOLUTION
See section Disease growth above.

REGRESSION
So far, the possibility of tumor regression has NOT been modeled in MISCAN-lung.
Only irreversible progression is modeled, which can be influenced by adapting the
dwelling time distributions in the various states.

RELEVANT ASSUMPTIONS
See Assumption Listing in Assumption Overview.

RELEVANT PARAMETERS
See Natural History parameters in Parameter Overview.
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SCREENING COMPONENT

SUMMARY
This document describes the processes in the model that are responsible for generating
screening dissemination and detection of disease.

OVERVIEW
The screening component simulates the screening program for lung cancer and its
effects.

DISEASE DETECTION MECHANISM
Preclinical lung cancer can pass through a number of disease states before clinical
diagnosis. Each of these states has a dwelling time distribution. If a screening takes
place during the phase of preclinical lung cancer, there is a probability of detection of
the cancer by the screening test that depends on stage and cell type. This probability is
called test sensitivity.

A screening examination may consist of more than one (up to three) screening-tests. In
case of simple model assumptions, the probability of a positive test result is taken to be
independent of the results of the same tests in previous screens, and also independent
of the results of other tests applied in the same or in previous screenings.

Systematic errors from screening-tests can occur for any of the following reasons:

• Person: For example, it is possible that a person has always had a positive sputum
test result in lung cancer screening.

• Lesion: For example, a lesion can be missed systematically because the screening-
test is less sensitive for some lesions that for others.

• Test moment: For example, in lung cancer screening it is possible that a particular
sputum cytology test yields a negative result because no material from any of the
malignant lesions was present in the sputum at the moment of the test.

It should be noted that both dwelling time distributions and sensitivity are generally
estimated from screening data. Therefore, the dwelling time distribution for lung
cancer states concerns disease that is in principle screen-detectable and does not start at
the time one single cell or an arbitrary low tumor size is present.
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SCREENING DISSEMINATION
Each stratum (*) may have its own definition of exposure to screening, which can be
used to specify a relation between e.g. lung cancer risk and uptake of screening.

A typical screening policy is defined by the ages at which persons will be invited for
screening and the year from which this policy is implemented. At first invitation a
simulated person attends with a given probability. The age at first invitation is not
always the first invitation age of the program because the person may be older when
the program starts. At the subsequent invitations for screening the probability of a
person attending depends on attendance to the previous screening. In general we have
observed that the percentage of people who accepted the previous invitation and is
again attending a subsequent screening is around 60 higher than that of people who
did not show up at the previous invitation.

Alternatively, timing of screenings can be defined as the age distribution of receiving
the first screening; a probability to receive a second screening and the interval
distribution to that second screening; and the interval distribution to subsequent
screenings depending on the length of the previous interval.

(*) A stratum as a subset of the modeled population that can have a different birth table
(to define cohorts), life table, exposure to risk factors, risk-effect relationships, and
screening participation.

TYPE / DETECTION INTERACTION
Test sensitivity can depend on tumor cell type.

STAGE / DETECTION INTERACTION
Test sensitivity can depend on disease stage.
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LENGTH BIAS
When sensitivity is constant during the preclinical cancer period, at first screening,
screen-detected cancers will be found on average halfway their preclinical period.
Therefore, the lead-time is on average half of their preclinical period. This implies that
cancers with a long preclinical period tend to have a longer lead-time. Because of the
longer duration of possible detection by first screenings, first-screening-detected cases
tend to have longer dwelling times than the average cancer. When the dwelling time
distribution is exponential, then the average lead-time of cases detected at first
screening will be the same as the average dwelling time of the average cancer, despite
the fact that among the screen-detected cases the average lead-time is only half of their
dwelling time.
This phenomenon causes an extra long lead-time effect on survival from screen-
detected cases.
At repeat screenings (unless after a very long interval) there will be relatively fewer
cancers detected with long dwelling times but the average lead-time will be longer
than half of their dwelling time.

Another possible length-time effect concerns a possible correlation between preclinical
dwelling time and survival from clinical diagnosis. MISCAN-lung can explicitly model
such an effect but our current models do not do this.

DETAIL
For each simulated initiation, an anatomical site may be generated, for instance central
versus peripheral location in the lung.

Positive test results can change the course that the disease would take without
screening. There are two ways of specifying the consequences of screen-detection: as
modifications relative to the original course of the disease, or as a new course
independent of the original course.

When defining consequences as modification relative to the original course of the
disease, the model accounts for the effects of lead-time due to early detection of cancer
and for diagnoses of cancer that would not have occurred without screening (often
called overdiagnosis or extra incidence). The moment of death from disease can be
delayed, and the probability distribution of the length of the delay should be specified.
Important special cases of delay are complete cure (infinite delay) and no change (zero
delay).

Defining consequences as an independent further course of the disease consists of
specifying a new survival distribution from time of screen-detection.

Another possible consequence of screen-detection is a probability of (surgery)
mortality at the time of diagnosis and treatment.

RELEVANT ASSUMPTIONS
See section Screening under Assumption Listing in Assumption Overview.
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RELEVANT PARAMETERS
See Screening Test parameters in Parameter Overview.Erasmus MC (Lung)
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OUTPUT OVERVIEW

SUMMARY
This section describes the outputs generated by the MISCAN-lung model for lung
cancer.

OVERVIEW
The output of the MISCAN-lung program consists of the simulated events (e.g., the
number of cases diagnosed, number of cases missed by screening, and mortality from
the disease and from other causes) and person time (e.g., the life years lost due to the
disease and life years with the disease). Most output is given by calendar year and
disease state. The output is stored in data files to enable further calculations with the
simulated results.

The MISCAN-lung model simulates among others the outputs for the Smoking
Generator and Screening Base Cases. The output on screening effects are limited to the
case in which the Mayo Lung Project (MLP) module is activated.

OUTPUT LISTING
The MISCAN-lung model produces output data in files, which can be processed
further to yield the final outputs of the model. (E.g. using Microsoft Excel or a
statistical package like SAS or SPSS.)

The main outputs of MISCAN-lung are:

1. Lung cancer (LC) incidence;

2. Mortality (Lung Cancer and Other Causes);

3. Survival/life years in disease states;

by time, stage, cell type, and demographics.

Because our model is a microsimulation model, we can also produce the following
outputs:

4. Age groups required in the output;

5. Lead time;

6. Overdiagnosis;

7. Individual life history;

8. Simulated screening tests and test results.

The outputs in the base case analyses include:
Smoking Base Case

1. Prevalence of lung cancer in 1986 by age groups in the range 30-84 y.

2. Age-adjusted lung cancer incidence rate by calendar year (1975-2000).

3. Age-adjusted lung cancer mortality rate by calendar year (1975-2000) and by
smoking status.
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4. Smoking prevalence by calendar year (1975-2000).

5. Smoking attributable lung cancer mortality.

Screening Base Case

6. Number of invitations for screen-tests and opportunistic screen-tests for each
year.

7. Number of positive and negative test results per preclinical state and per year.

8. Total number of life years, life years lost due to cancer, number of specific
deaths and non specific deaths.

9. Number of screenings that prevented cancer by year of screening.

10. Number of screenings that detected cancer early by year of screening.

11. Number of life years gained due to screening by year of screening.

During development of the MISCAN-lung model calibrations were performed for
CISNET Base Case analyses. The model has been validated by simulating the Mayo
Lung Project (flat screen X-ray screening) and ELCAP (CT screening). See Results
Overview.
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RESULTS OVERVIEW

SUMMARY
Describes the general results for lung cancer obtained from MISCAN and MISCAN-
lung model output. (Before 2008.)

OVERVIEW
This document describes results of MISCAN & MISCAN-lung on calibration and
validation, and results concerning Base Case analyses. (Before 2008.)

(The MISCAN model does NOT include the Risk Factors Component of MISCAN-
lung.)

RESULTS LIST
1. Calibration
For the Base Case analyses we calibrated the MISCAN model to common inputs on:

• Cancer incidence per 100,000 (SEER 1975-1979) by age group;

• Cell type prevalence (SEER) by age group;

• Stage distribution (SEER) by age group;

• Relative survival by stage, cell type, and age group;

Calibration was done on cancer incidence, prevalence and stage and cell type
distribution of cancers. MISCAN reproduces the base case inputs well. Only lung
cancer incidence, prevalence, and mortality in the older age groups (> 70 years) differ
significantly.

2. Model Validation by Simulation of Mayo Lung Project - flat screen X-ray
screening
We have tried to estimate a model of screening for lung cancer from the Mayo Clinic
randomized trial on lung cancer screening that started around 1975. The Mayo Lung

Project1,2,3,4,5,6 was a randomized controlled trial designed to detect lung cancer at a
curable stage. Screening tests included chest X-rays, 3-day pooled sputum cytology
studies, and lung-health questionnaires. These tests were given to a study population
of 9,211 male outpatients with a negative first screening for lung cancer and high risk
for the disease. Both trial arms (intervention and control) received a first screening and
the intervention arm continued to receive screenings every four months for six years.
Lung cancer diagnoses were followed up to 30 June 1983 and mortality was followed
up to 31 December 1996. The trial was successful in detection of early lung cancer but
not in prevention of lung cancer mortality.

Four models (Models A, B, C, D) were developed before we had access to the data set
of the Mayo Clinic trial. Model A assumes that screening test sensitivity is 100% and
the sojourn time has an exponential distribution from the time of becoming screen-
detectable to the time of clinical diagnosis without screening. Model B adjusted model
A by assuming three times longer sojourn times and fitted the test sensitivity to the
detection rate at first screening again. Model C adjusted model B by assuming the
possibility of a systematic negative screening result. Finally, we constructed Model D,
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which is in agreement with observed interval cancer incidence.

We then applied an automatic fit procedure based on the Nelder and Mead method (or
amoeba) by simultaneously adjusting model parameters until best agreement with

observed data was reached7. We fitted the modeled onset of preclinical screen-
detectable disease so that incidence in a situation without screening agrees with
incidence observed in SEER. Subsequently, we fitted the screen-detectable sojourn
times, test sensitivity and a relative lung cancer risk of the trial to the results from the
Mayo Clinic trial. Starting from the best fit, we further investigated to what extent
indolent cancers give a better explanation of observed data. In addition, we tested the
design of the study to test the randomization of the study.

The best model fit so far has good agreement with observed data. Figure 8 compares
screen-detected rates and interval cancer incidence of the intervention group and
Figure 9 of the control group. Although the interval cancer incidence in the
intervention group still looks low in comparison with observed data, this does not
reach a threshold of statistical significance of 5% and therefore can be regarded as due
to random noise. We found that even our best model fit predicts lower rates of interval
cancer incidence of adeno carcinoma/large cell lung cancer. That appears to be
consistent with an assumption of overdiagnosis of adeno carcinoma due to screening.
The simulated results show that there are systematic missed lesions in either preclinical
stage 2- and preclinical stage 3+. Our model also predicts that indolent cancers are not
a serious issue in the Mayo Clinic trial. Finally, our model predicts higher cancer
incidence in the study group compared to the control group, which provides evidence
against the randomization of the trial.

cancers MLP intervention
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cancers MLP control

The model results presented above are produced by the MISCAN model as before
inclusion of the risk factors model based on the Moolgavkar model on multistage

carcinogenesis8,9,10,11,12. We have designed a model for the Mayo Clinic trial that
includes the risk factors model where the risk of lung cancer is predicted based on
smoking history as reported by trial participants instead of based on a fit of the age
effect on SEER data and an elevated risk due to high smoking prevalence in the trial
population. This MISCAN-lung model is still too tentative to present its results here
but we have concluded that the model predicts background incidence very well.
Because of similarity of the screen-detectable phase of the disease in both models, we
expect that this model will closely reproduce the results as presented above but it will
provide additional opportunity to study screening results by smoking history.

3. Model Validation by Simulation of CT Screening

We simulated the Early Lung Cancer Action Project (ELCAP)13,14,15,16,17,18 for
validation concerning low dose CT screening by comparing observed data from
ELCAP to the results of the MISCAN simulation. ELCAP is a non-comparative
observational study that is designed to evaluate baseline and annual repeat screening
by low dose CT in 1,000 individuals with higher risk of lung cancer. The baseline
screening found that among the whole study population, a positive result (defined as
1-6 non-calcified nodules) was found three times more commonly on low-dose CT than
on CRX (23% [95% CI 21-26] vs 7% [5-9]). In the whole study population, malignant
tumors were found four times more frequently on low-dose CT than on CRX; and stage
I tumors were detected six times more frequently on low-dose CT than on CRX (2.3%

[1.5-3.3] vs 0.4% [0.1-0.9])13,14,17. The initial findings on repeat screening found that
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annual repetition of CT screening is sufficient to minimize interval cancers15,17.

We have begun to adapt the x-ray screening model for simulating the ELCAP. The
distinct characteristic of the ELCAP is that there is detailed information on tumor size;
thus, it is possible to study the relationship between tumor size and curability of lung
cancers. Currently, ELCAP is limited because there are not enough cancer cases yet.
Our simulation model is not limited by number of cancer cases and therefore is able to
achieve the study goal even if there are not yet real data available. We take this into
account in our development of the model by assuming more disease states, which
influence the size of the tumor. Since ELCAP is designed to compare the screening by
low dose CT and chest radiographs, we introduced two screening policies to represent
these two kinds of tests.

4. Simulations of CT Screening in the Mayo CT Project

...UNDER CONSTRUCTION...

5. Smoking Base Case: Effects of Anti-Smoking Campaigns on lung cancer mortality

...UNDER CONSTRUCTION...

Also refer to the specific implementations:

• Smoking Base Case14Mar06

• Smoking Base Case16Feb09

which describe the assumptions used in two versions of our model for the Smoking
Base Case.
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SMOKING BASE CASE14MAR06
Summary
This document describes the MISCAN-lung model assumptions for the Smoking Base
Case, from which we submitted the results to the CISNET program on 14 March 2006.

The Smoking Base Case involved four models: white males and white females, and
including and excluding smoking effects on lung cancer risk.

Demography
The birth table used describes the probability distribution of being born before the start
of the calendar year:

Birth Table

Calendar Year Cumulative Probability

1901 0

1906 0.0514

1911 0.1081

1916 0.1678

1921 0.23

1926 0.2942

1931 0.3551

1936 0.4108

1941 0.468

1946 0.5367

1951 0.6214

1956 0.7163

1961 0.8173

1966 0.9157

1971 1

Mortality from causes other than lung cancer is governed by the Smoking History
Generator provided for the Smoking Base Case by NCI staff (see Smoking Generator
Component).

Disease States
The disease model includes the following disease states:
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Disease States

Normal, No Known Lung Cancer

Preclinical

Squamous Cell, Stage II-

Squamous Cell, Stage III+

Adeno/Large Cell, Stage II-

Adeno/Large Cell, Stage III+

Small Cell, Stage II-

Small Cell, Stage III+

Clinical

Squamous Cell, Stage II-

Squamous Cell, Stage III+

Adeno/Large Cell, Stage II-

Adeno/Large Cell, Stage III+

Small Cell, Stage II-

Small Cell, Stage III+

Screen-Detected

Squamous Cell, Stage II-

Squamous Cell, Stage III+

Adeno/Large Cell, Stage II-

Adeno/Large Cell, Stage III+

Small Cell, Stage II-

Small Cell, Stage III+

End States

Death from Lung Cancer

Death from Other Causes

Risk Factors Model
The model includes exposure to one risk factor: cigarette smoking. The exposure to this
risk factor is governed by the Smoking History Generator, provided for the Smoking
Base Case by NCI staff (see Smoking Generator Component).

Based on the current smoking status over the course of the life history, the model
assumes the following parameters for the development of lung cancer:

When not smoking: Clones of initiated cells start at a size of 200 cells; the rate of
initiation is 0.007015 per year; the exponential growth rate of the clones of initiated
cells is 0.0751; and the rate of malignant transformation to lung cancer is 1.403∙10-7.

These base rates are derived from CPS I1.

When smoking, the when-not-smoking rates are multiplied by the following factors,
depending on the dose expressed in cigarettes per day:
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Rate ratios by smoking dose relative to when not smoking

Cigarettes
per Day

Initiation Promotion Malignant
Transformation

4.532 1.323 4.532

4.532 1.541 4.532

4.532 1.688 4.532

4.532 1.806 4.532

4.532 1.907 4.532

4.532 1.997 4.532

4.532 2.078 4.532

4.532 2.153 4.532

4.532 2.223 4.532

The assumptions for the risk factor model are based on1.

Preclinical lung cancer
Of the malignant transformations that are generated, 35.7% become squamous cell
carcinoma, 44.0% adeno or large cell carcinoma, and 20.3% small cell carcinoma.

Dwelling times [in years] and stage distribution

Cell type Constant lag time from
malignant transformation

to screen-detectable
preclinical cancer

Mean dwelling time
in preclinical

stage I-II

Mean dwelling time
in preclinical
stage III-IV

Percentage
clinical diagnosis

in stage I-II

Squamous 7.2 years 1.36 2.82 29.2%

Adeno/Large 8.2 years 1.36 2.82 30.0%

Small 5.9 years 0.39 1.11 9.4%

The assumptions on dwelling times for preclinical disease states are based on our

model estimates of the Mayo Lung Project2.

Survival from lung cancer
Survival from lung cancer is modeled as a probability of long term cause specific
survival, and for the remaining cancers, a Weibull distribution for the time from
clinical diagnosis to death from lung cancer. This cause specific cancer survival is
superseded if death from causes other than lung cancer is earlier than death from lung
cancer.
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Survival from lung cancer

Weibull distribution for time from clinical diagnosis to lung
cancer death

Cell
type

Stage at
diagnosis

Long term
survival

Mean Shape

Squamous I-II 0.180 2.419 0.573

Squamous III-IV 0.060 0.752 0.641

Adeno/

Large

I-II 0.290 4.783 0.676

Adeno/

Large

III-IV 0.050 0.674 0.607

Small I-II 0.080 1.049 0.727

Small III-IV 0.010 0.507 0.738

Screening
The four models for the Smoking Base Case did NOT include any screening.

Model variants
The models for white males and white females are only different with respect to the
exposure to cigarette smoking as determined by the Smoking History Generator (see
Smoking Generator Component).
The models for no smoking effect are only different from the specification above with
respect to the table "Rate ratios by smoking dose relative to when not smoking" where
the rate ratios are all 1.
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SMOKING BASE CASE16FEB09
Summary
This document describes the MISCAN-lung model assumptions for the Smoking Base
Case, from which we submitted the results to the CISNET program on 16 Feb 2009.

The Smoking Base Case involves four populations: white males, white females, all
races males and all races females and considers the U.S. population aged 30-84 y in the
calendar years 1975-2000. Three tobacco control scenarios are evaluated, i.e. actual
tobacco control (TC), no tobacco control (NTC counterfactual) and complete tobacco
control (CTC counterfactual, assuming everybody stopped smoking in 1965).

Demography
Birth tables used describe the probability distribution of being born before the start of a
specific calendar year.
The original range of birth years comprised 1900-1970 in five-year bins. As this leads to
an incomplete age range (30-84) in the calendar years 1975-1984, the range of birth
years was later extended to include 1890-1900 (for all races only).

The birth tables are based on U.S. population data1. For the extended birth year range,
small adjustments were made by trial and error to improve agreement between the age
distributions as calculated by MISCAN-lung for the calendar years 1975, 1986 and 2000
and the age distributions observed in the U.S. all races male and female populations in

those years2.

Birth Table

Calendar Year Cumulative
Probability

Original Extended

Whites All races All races male female

1891 0 0 0 0 0

1896 0 0 0.0548 0.0449 0.0465

1901 0 0 0.1095 0.0969 0.0957

1906 0.0619 0.0615 0.1643 0.1517 0.1503

1911 0.1241 0.1233 0.2193 0.2122 0.2063

1916 0.1906 0.1887 0.2776 0.2704 0.2650

1921 0.2578 0.2545 0.3362 0.3290 0.3224

1926 0.3253 0.3212 0.3956 0.3866 0.3816

1931 0.3872 0.3824 0.4501 0.4400 0.4360

1936 0.4419 0.4368 0.4985 0.4884 0.4849

1941 0.4977 0.4924 0.5480 0.5379 0.5358

1946 0.5645 0.5585 0.6069 0.5979 0.5968

1951 0.6476 0.6406 0.6800 0.6710 0.6698

1956 0.7373 0.7305 0.7600 0.7510 0.7505

1961 0.8324 0.8267 0.8457 0.8367 0.8377

1966 0.9212 0.9187 0.9276 0.9218 0.9227

1971 1 1 1 1 1
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Mortality from causes other than lung cancer is governed by the data tables of the
Smoking History Generator Application (see Smoking Generator Component)
provided for the Smoking Base Case by NCI staff.

Estimation of U.S. population size for the counterfactual scenarios of No Tobacco Control and
Complete Tobacco Control.

For persons of a certain age, , in a given year, , the expected number of lung cancer
deaths, , can be calculated from the model results (number of simulated lung
cancer deaths, ; size of simulated population, and the actual U.S.
population size, :

The latter quantity is known from observations for the actual tobacco control scenario
in the U.S. but not for the two counterfactual scenarios as the latter never happened in
reality.
Therefore, the population size in the case of for instance complete tobacco control,

, is estimated as follows:

where is the population size resulting from the simulation of the complete
tobacco control scenario.
Under this scenario, the estimated number of lung cancer deaths, , becomes:

where is the number of simulated lung cancer deaths under the complete
tobacco control scenario.
Similar reasoning holds for the no tobacco control scenario.

Disease States
The disease model includes the following disease states:
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Disease States

Normal, No Known Lung Cancer

Preclinical

Squamous Cell, Stage II-

Squamous Cell, Stage III+

Adeno/Large Cell, Stage II-

Adeno/Large Cell, Stage III+

Small Cell, Stage II-

Small Cell, Stage III+

Clinical

Squamous Cell, Stage II-

Squamous Cell, Stage III+

Adeno/Large Cell, Stage II-

Adeno/Large Cell, Stage III+

Small Cell, Stage II-

Small Cell, Stage III+

Screen-Detected

Squamous Cell, Stage II-

Squamous Cell, Stage III+

Adeno/Large Cell, Stage II-

Adeno/Large Cell, Stage III+

Small Cell, Stage II-

Small Cell, Stage III+

End States

Death from Lung Cancer

Death from Other Causes

Risk Factors Model
The model includes exposure to one risk factor: cigarette smoking. The exposure to this
risk factor is governed by the data tables of the Smoking History Generator
Application, provided for the Smoking Base Case by NCI staff (see Smoking Generator
Component). MISCAN-lung reads those tables to produce appropriate random
individual smoking histories for the simulated persons.

Based on the current smoking status over the course of the life history, the model
assumes the following parameters for the development of lung cancer:

When NOT smoking: Clones of initiated cells start at a size of 80 or 30 cells for males or
females, respectively; the rate of initiation is 0.024 or 0.036 per year; the exponential
growth rate of the clones of initiated cells is 0.0973; and the rate of malignant
transformation to lung cancer is 7.58∙10-8. These base rates are derived from HPFS or

NHS for males or females, respectively3.

When smoking, the when-not-smoking rates are multiplied by the following factors,
depending on the dose expressed in cigarettes per day:
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Rate ratios by smoking dose relative to when not smoking

Cigarettes
per Day

Males Females

Initiation Promotion Malignant
Transformation

Initiation Promotion Malignant
Transformation

1.0 1.1810 1.7804 1.0 1.2322 1.3026

1.0 1.3208 2.2976 1.0 1.4116 1.5031

1.0 1.4186 2.6437 1.0 1.5371 1.6373

1.0 1.4987 2.9206 1.0 1.6400 1.7446

1.0 1.5685 3.1575 1.0 1.7295 1.8365

1.0 1.6311 3.3675 1.0 1.8099 1.9179

1.0 1.6885 3.5578 1.0 1.8835 1.9917

1.0 1.7418 3.7329 1.0 1.9519 2.0596

1.0 1.8157 3.9735 1.0 2.0467 2.1528

The assumptions for the risk factors model are based on4 and the newer data from3.

Preclinical lung cancer
Of the malignant transformations that are generated, 35.7% become squamous cell
carcinoma, 44.0% adeno or large cell carcinoma, and 20.3% small cell carcinoma.

Dwelling times [in years] and stage distribution

Cell type Constant lag time from
malignant transformation

to screen-detectable
preclinical cancer

Mean dwelling time
in preclinical

stage I-II

Mean dwelling time
in preclinical
stage III-IV

Percentage
clinical diagnosis

in stage I-II

Squamous 0.01 1.36 2.82 29.2%

Adeno/Large 0.01 1.36 2.82 30.0%

Small 0.01 0.39 1.11 9.4%

The assumptions on dwelling times for preclinical disease states are based on our

model estimates of the Mayo Lung Project5.

Survival from lung cancer
Survival from lung cancer is modeled as a probability of long term cause specific
survival, and for the remaining cancers, a Weibull distribution for the time from
clinical diagnosis to death from lung cancer. This cause specific cancer survival is
superseded if death from causes other than lung cancer is earlier than death from lung
cancer.
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Survival from lung cancer

Weibull distribution for time from clinical diagnosis to lung
cancer death

Cell type Stage at diagnosis Long term survival
(fraction)

Mean
(y)

Shape

Squamous I-II 0.180 2.419 0.573

Squamous III-IV 0.060 0.752 0.641

Adeno/Large I-II 0.290 4.783 0.676

Adeno/Large III-IV 0.050 0.674 0.607

Small I-II 0.080 1.049 0.727

Small III-IV 0.010 0.507 0.738

Screening
The MISCAN-lung models for the Smoking Base Case do NOT include any screening.

Model variants
The models for the various population categories are only different with respect to the
exposure to cigarette smoking as determined from the data tables of the Smoking
History Generator Application (see Smoking Generator Component).The data tables
provided cover the Tobacco Control and No Tobacco Control scenarios. The Smoking
History Generator Application includes an option to calculate smoking histories in case
of Complete Tobacco Control, when nobody smokes after the start of a given year (e.g.
1965).
As MISCAN-lung computes its own sets of smoking histories, for the scenario of
Complete Tobacco Control we amended the data tables ourselves: the probabilities to
start smoking in or after 1965 were set to zero; the probabilities to stop smoking in or
after 1965 were set to one; the corresponding smoking intensities were set to zero cpd;
and the probabilities of death from other causes in that time period were set equal to
those for never smokers.
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BACKGROUND INFORMATION
MODEL OVERVIEW

Background Information (Model Overview)

SUMMARY
This document provides background information on various aspects of lung cancer
that are of relevance for modeling the disease.

BACKGROUND
Lung cancer is a major health problem in the United States, even though the age-
adjusted incidence and mortality rates of lung cancer have been decreasing each year,
since around 1992, by an average of 1.8% for men and 0.6% for women. It is generally
assumed that most of this population trend is due to changes in smoking behavior but
this assumption is so far not quantified and there are no good tools to predict future
trends other than extrapolating observed trends.

Risk factors
Exposure to tobacco smoke is by far the most serious risk factor for cancer of the lung
and bronchi. An estimated 87% of lung cancer deaths in 2003 are attributable to active
smoking. Other risk factors include exposure to second-hand smoke (passive smoking);
radon (a naturally occurring air pollutant); asbestos; and diet.
In addition to tobacco, poor dietary quality has been related to lung cancer. Expert
consensus suggests that as much as 20-30% of lung cancers are attributable to a poor
quality diet.

There is an intricate relationship between exposure to risk factors and resulting risk of
lung cancer. Generally, this relationship is described by empirical studies as a relative
or excess risk among those exposed to a risk factor with respect to those who were not
exposed, or as a comparison between different levels of exposure. Very few report on
possible mechanisms that explain the timing from exposure to expression. There is
general agreement that exposure to tobacco smoke leads to a very strong increase in
risk for lung cancer and that the time from exposure to lung cancer can be several
decades.

Multistage Carcinogenesis
The concept of multistage carcinogenesis provides a possible explanation of the long
duration from exposure to expression. Carcinogenesis proceeds through at least the
following stages:

Initiation: Initiation is the process in which a single somatic cell undergoes non-lethal,
but heritable, mutation. The initiated cell can escape cellular regulatory mechanisms.
Promotion: Promotion is the process in which the initiated cell is exposed to a tumor
promoter that causes phenotypical clonal expansion. Tumor promoters are either
external or internal stimuli and stimulate growth of initiated cells.
Malignant conversion: During malignant conversion or transformation, cellular growth
is further deregulated. Like initiation, this step requires genetic alteration.
Progression: During this stage, cellular growth is further deregulated and proceeds
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uncontrolled. Progression is probably the most complex stage, because both acquired
genetic and phenotypic alterations occur, and cellular expansion is rapid.

The first quantitative mechanistic model concerning carcinogenesis was published by
Armitage and Doll (1954). Subsequent models incorporate new knowledge concerning
multistage carcinogenesis, such as the clonal expansion occurring during the
promotion stage. Dr. Moolgavkar at the Fred Hutchinson Cancer Research Center is at
the forefront of this model development.
The Moolgavkar model summarizes the promotion stage in a single step and agrees
very well with observed epidemiological evidence. However, current versions of the
Moolgavkar model do not account for the progression stage in any detail. This stage is
particularly important for evaluation of early detection of (lung) cancer.

Early detection
Since neither primary prevention nor treatment has had a satisfying impact on lung
cancer incidence or mortality, secondary prevention (screening of asymptomatic
individuals) remains a topic of great interest. Because lung cancer is usually diagnosed
based on symptoms, the disease is usually so far advanced that curative therapy is not
possible. Screening has the potential to detect lung cancer at earlier stages, when
survival rates are considerably higher.

It is anticipated that new technology for lung cancer screening, particularly CT
screening, will make it possible to better detect aggressive cancers early enough to be
curable. Improved screening has the potential to prevent thousands of lung cancer
deaths annually.

Diagnosis and therapy
New lung cancer therapies unfortunately have not had a substantial impact on
mortality so far. Most clinical trials did not show major improvements in survival, and
population-based survival from a diagnosis of lung cancer has improved only slightly
over the past few decades.

However, there is a striking variation in the treatment of lung cancer that raises
concerns about disparities in the care of patients of different racial/ethnic groups and
advanced age. Several population-based studies have found that black and Hispanic
patients are less likely to undergo potentially curative surgical resection for early stage
non-small cell lung cancer than white patients, even when controlling for differences in
comorbid illness and age. In addition to these variations according to patients' racial/
ethnic background, many studies have demonstrated a marked decline in the use of
curative treatments with increasing patient age.

Go back to Model Overview
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Important note: This document will remain archived as a technical appendix for
publications. New versions will be added periodically as model refinements and
updates are completed. The most current version is available at
http://cisnet.cancer.gov/profiles. Note that unlike most PDF documents, the
CISNET model profiles are not suitable for printing as they are not typically
written or read in sequential fashion.

We recommend you let your interests guide you through this document, using the
navigation tree as a general guide to the content available.

The intent of this document is to provide the interested reader with insight into
ongoing research. Model parameters, structure, and results contained herein
should be considered representative but preliminary in nature.

We encourage interested readers to contact the contributors for further
information.

Go directly to the: Reader's Guide.
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READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

◦ Smoking History Generator Component

◦ Population Component

◦ Natural History Component

◦ Survival Mortality Component

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Key References
A list of references used in the development of the model.
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MODEL PURPOSE

SUMMARY
This document provides a brief overview of the Fred Hutchinson Cancer Research
Center (FHCRC) lung cancer model. This model uses an underlying biologically based
multistage model (with additional age, period and cohort effects) to represent the
effects of smoking on the natural history of lung cancer. The FHCRC lung cancer
model may be utilized to address questions about the impact of public health
information on US lung cancer trends, and to predict the hypothetical impact of
alternative tobacco control policies.

PURPOSE
The purpose of the FHCRC lung cancer model is to serve as an effective tool for
evaluating lung cancer trends in the US population, and the effects of possible
interventions. The FHCRC lung cancer model combines an underlying biologically
based natural history model that is calibrated to individual smoking histories in
substantial US lung cancer mortality cohorts with additional age, period, and birth
cohort effects to improve the calibration to US lung cancer mortality data. Limitations
include that it is not calibrated to US lung cancer incidence or CT screening cohort
data.

Two distinct modeling projects contributed to the development of the FHCRC lung
cancer model. The first project consisted of calibrating a biologically based natural
history model to individual smoking histories in several substantial lung cancer
cohorts. The calibrated model parameters (including background and smoking dose
response parameters) were shared with other Cancer Intervention and Surveillance
Modeling Network (CISNET) lung cancer modeling groups. The second project (called
the Lung Smoking Base Case) consists of combining the biologically based natural
history model with additional age, period, and birth cohort effects. This model is
calibrated to lung cancer deaths in the US population by single years of age and
calendar year. It should be of use in evaluating the effects of alternative tobacco control
policies, and in making projections of future US lung cancer mortality.

Development of the FHCRC lung cancer model took place in two distinct projects:

Project One : Calibrating a natural history model to smoking cohort data
Project Two : Lung Smoking Base Case - Modeling US lung cancer mortality trends
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MODEL OVERVIEW

SUMMARY
This document describes previous work leading to this model and model itself in
general terms.

PURPOSE
We wish to understand the effects of smoking and other factors on US lung cancer
mortality. We modeled the effects of smoking using the biologically based two-stage
clonal expansion (TSCE) model (Moolgavkar et al. 1979, 1981, 1990; Heidenreich et al.,
1997). The TSCE model relates smoking to biological rates for cell initiation, promotion,
and malignant conversion processes. The effects of additional unknown factors that
may have influenced US lung cancer mortality rates were modeled using period and
cohort effects.

BACKGROUND
Lung cancer is the leading cause of cancer death in the US, and smoking is the most
important risk factor for developing lung cancer. Thus in modeling lung cancer in the
US, we felt it was important to use the best available methods to relate smoking to lung
cancer risk. The biologically based TSCE model seemed best for this purpose.

The FHCRC lung cancer project began with calibration of the TSCE model to several
large smoking cohorts, modeling individual smoking histories in relation to lung
cancer incidence and mortality [Project One]. This was followed by the Lung Smoking
Base Case [Project Two] in which we used the calibrated TSCE model to represent
effects of smoking on lung cancer mortality in the US population. We also introduced
additional corrections as a function of period and birth cohort to improve the fit to US
lung cancer mortality.

The TSCE model was initially developed by Moolgavkar, Venzon, and Knudson. This
model has been applied to analyze many types of cancer, including the effects of
smoking and other exposures. Calibrating the TSCE model to cohort data consists of
estimating dose-response relationships for these exposures as they affect cell initiation,
promotion, and malignant conversion rates. Maximum likelihood methods allow
optimization of the model to represent temporal patterns of risk associated with
different exposure histories of individuals in the cohort.

The TSCE natural history model represents basic cellular processes, including cell
division, apoptosis, and mutation, that contribute to three distinct phases in the
carcinogenic process: initiation, promotion (birth minus death of initiated cells) and
malignant conversion (TSCEModel Details). The TSCE model represents a significant
simplification of the biological processes associate with lung cancer. The model ignores
the possibility of multiple cancer pathways and disease subtypes. However, it does
provide a rigorous mathematical representation of processes that are considered as the
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rate-limiting events in carcinogenesis, and has provided excellent fits to individual and
population data for many cancer types (Moolgavkar and Luebeck, 2003).

The FHCRC lung cancer model builds on previous analyses using the TSCE model to
relate lung cancer risk to individual exposure patterns for smoking, radon, arsenic,
fibers, and radiation (Castren et al., 1999; Hazelton et al., 2001, 2005, 2006; Haylock et
al., 2004; Heidenreich et al, 2002; Kai et al, 1997; Little et al., 2002; Luebeck et al., 1999,
2000; Meza et al., 2008; Moolgavkar et al., 1989, 1993, 1998, 1999, 2000, 2001a, 2001b,
2001c; Stevens et al., 1979, 1984). These analyses consistently show that the most
important lung cancer risk factor is tobacco smoke, with the risk increasing non-
linearly with smoking duration (Hazelton et al., 2005; Meza et al., 2008).

The FHCRC lung cancer model was applied to the Smoking Base Case [Project Two],
using the TSCE model to represent effects of smoking, and period and cohort effects to
represent other unknown factors. Inputs included US population data and lung cancer
deaths for males and females binned by single year of age and calendar year, and a
smoking history generator developed by NCI to simulate smoking histories and other
cause mortality for individuals in the US. Outputs are estimates of lung cancer deaths
by gender, age, and calendar year given historical smoking patterns, and also counter-
factual estimates for lung cancer deaths given alternative US smoking patterns.

MODEL DESCRIPTION
The FHCRC lung cancer model consists of a biologically based TSCE natural history
model of the effects of smoking on lung cancer morality, along with period and birth
cohort effects to represent lung cancer mortality in the US population (called the TSCE-
PC model, representing the age effects given by the TSCE natural history model, along
with period and birth cohort effects). A second model (called the TSCE-APC model)
includes additional age effects to capture possible discrepancies between age effects in
the TSCE calibration to US lung cancer mortality, and compensate for possible
limitations of the TSCE model in representing the effects of tobacco smoke on lung
cancer mortality.

For more details see: TSCEModel Details

CONTRIBUTORS
William D Hazelton
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ASSUMPTION OVERVIEW

SUMMARY
This document discusses assumptions underlying the model as well as some of their
implications.

BACKGROUND
The TSCE natural history model relates individual non-smoking and smoking histories
to cellular processes that contribute to the development of lung cancer. The TSCE
model allows calculation of the time-dependent probability for lung cancer mortality at
each age. The TSCE model includes an initial rate for mutation or epi-genetic change
leading to initiated cells, a birth rate and death rate for the initiated cells, and a rate for
second mutation or epi-genetic change that occurs during the cell division process of
an initiated cell to generate a malignant cell as well as another initiated cell. A lag time
or lag time distribution is used to represent the time from the first malignant cell to
cancer incidence or mortality from cancer. Smoking is assumed to affect any or all of
the rates through flexible dose-response functions.

To assess model reliability (Project One), we looked at consistency of model parameter
estimates between the different lung cancer mortality cohorts. We also analyzed
separately lung cancer incidence by subtype in the NHS and HPFS cohorts, where that
data is available.

In working on the Lung Smoking Base Case - Project Two, the FHCRC group found
that the TSCE natural history model, when calibrated to cohort data for lung cancer in
relation to smoking, does not fully account for lung cancer mortality in the US
population. Thus the FHCRC group found it necessary to include additional age,
period, and birth cohort adjustments that may correct for limitations of the TSCE
natural history model, for changing cigarette composition, and other exposures and
environmental factors that contribute to lung cancer in the US population. The FHCRC
lung cancer model combines the TSCE natural history model for smoking with these
additional age, period, and birth cohort adjustments.

ASSUMPTION LISTING

1. The TSCE natural history model (used in the Project One and Project Two by the
FHCRC group) assumes two stochastic rate-limiting mutation events, clonal
expansion of initiated cells, and a lag time from the first occurrence of a
malignant cell to the time of lung cancer death.

2. Calibration of the TSCE model to the HPFS and NHS lung cancer mortality data
(see Project One and Calibration and Validation sections) and subsequent
estimation of lung cancer deaths for the Lung Smoking Base Case included a
model assumption that there are a fixed number ( ) normal stem cells in lung.
Clearly the number must increase during embryogenesis, and any trend
throughout life has not been ascertained, nor has the total number, as lung stem
cells are difficult to identify. However, the likelihood based modeling approach
will estimate an initiation rate that will compensate any error on the assumed
number of stem cells at risk for initiation.
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3. The background rates for initiation and malignant conversion rates set equal to
each other, . This assures identifiability of the TSCE model parameters.

4. Normal stem cells may undergo faulty division to create an initiated cell.

5. Growth of the population of initiated cells (promotion) is modeled stochastically
through cell birth and death process. This process can not be observed directly,
but is consistently estimated between different cohorts as the most important
mechanism whereby cigarettes influence the risk of lung cancer.

6. Malignant conversion in the TSCE model is assumed equivalent to first
occurrence of a malignant cell arising through faulty division of an initiated cell.

7. A lag time or lag time distribution is assumed to represent the time between the
occurrence of the first malignant cell and cancer death.

8. The effects of cigarette smoke is modeled as a constant dose rate during periods
of smoking, and the smoking dose has separate non-linear (power-law)
influences on the initiation, promotion, and malignant conversion rates in the
TSCE model.

9. The smoking dose-response from the HPFS/NHS calibration is applicable to the
simulated US population data, given subsequent adjustments for additional age,
period, and birth cohort.

10. The SHG provided by NCI provides individual smoking histories consistent
with the historical patterns of smoking in the US.

11. The other cause mortality input provided by the SHG reflects historical trends in
the US population.

12. An additional age effect may correct for deficiencies of the TSCE model, and
differences between age effects in the calibration cohort and the US population.

13. A period effect is adequate to account for historical changes in cigarette
composition, demographic changes, and changes in health care that may
influence lung cancer mortality.

14. A birth cohort effect is able to capture effects of environmental, nutritional, and
other factors that influences the lifetime risk for lung cancer.
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PARAMETER OVERVIEW

SUMMARY
This document provides an overview of the major parameters in the model, their
sources, and general implications they have on model outputs.

BACKGROUND
Parameters related to natural history for the Lung Smoking Base Case (Project Two)
were estimated from the TSCE model calibration to lung cancer mortality in smoking
cohorts (Project One), focusing on the HPFS and NHS cohorts. Additional age, period
and birth cohort parameters were estimated using US population and lung cancer
mortality data. Additional demographic parameters are embedded in the SHG to
reflect historical smoking trends and rates for other cause mortality.

PARAMETER LISTING OVERVIEW
The FHCRC lung cancer model parameters are categorized into:

1. Background parameters of the TSCE model (Natural History Component).

2. Dose-response parameters that relate current cigarette smoke exposure to the
rates for initiation, promotion (birth minus death of initiated cells) and
malignant conversion (Natural History Component).

3. Lag time parameters that describe the time lag or gamma lag time distribution
from the first malignant cell to cancer death (See Natural History Component
and Survival Mortality Component).

4. Additional demographic parameters used in the Lung Smoking Base Case
(Project Two): additional age, period, and birth cohort parameters applied to the
simulated US population (Population Component) to adjust the lung cancer
mortality calculations to represent US lung cancer deaths (Survival Mortality
Component).

The additional age, period, and birth cohort parameters are based on:

1. Smoothing parameters used to generate single year US population data from
census data

2. Smoothing parameters used to generate annual US lung cancer mortality data

BACKGROUND PARAMETERS:

1. Background initiation, malignant conversion rate

2. Background initiated cell division rate

3. Background net initiated cell promotion rate

DOSE-RESPONSE PARAMETERS FOR FULL MODEL:

1. Coefficient multiplying dose response for initiation

2. Power of dose for initiation
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3. Coefficient multiplying dose response for promotion

4. Power of dose for promotion

5. Coefficient multiplying dose response for malignant conversion

6. Power of dose for malignant conversion

NOTE 1. Typically only three or four dose-response parameters are required to model
lung cancer incidence or mortality due to cigarettes - two for the dominant effect of
promotion, and one or two describing the much smaller effect on initiation or
malignant conversion.

LAG TIME PARAMETERS:
Mean and standard deviation for gamma distribution, or fixed lag time

Fred Hutchinson CRC (FHLUNG)
Parameter Overview

Parameter Listing Overview

Page 69 of 288 All material © Copyright 2003-2011 CISNET



COMPONENT OVERVIEW

SUMMARY
This is a description of the basic computational building blocks/components of the
model.

OVERVIEW
Several components are involved to construct the FHCRC lung cancer model for the
Lung Smoking Base Case. A Population Component uses individual simulated
smoking and other cause mortality histories generated by the Smoking History
Generator to generate a simulated US population. A Natural History Component
utilizes the TSCE model, previously calibrated to smoking cohort data in Project One,
to estimate lung cancer deaths in the simulated US population based on the TSCE
model. A Survival Mortality Component includes effects of the lag time from first
malignant cell to lung cancer death in the TSCE model, and adjustments for additional
age, period, and birth cohort to improve the fit to US lung cancer mortality.

COMPONENT LISTING
The components used to construct the FHCRC lung cancer model include:

• Population Component

• Natural History Component

• Survival Mortality Component
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SMOKING HISTORY GENERATOR
COMPONENT

SUMMARY
The smoking history generator (SHG) is a shared precursor micro-simulation model
that produces cohort-specific smoking histories and deaths due to causes other than
lung cancer as inputs for the dose-response models used by members of the CISNET
lung cancer consortium.

OVERVIEW
The core SHG software was parameterized using three tobacco control scenarios to
produce the requisite input data for the models. The first, called the actual tobacco
control (ATC) scenario, is a quantitative description of actual smoking behaviors of
males and females born in the United States between 1890 and 1984. The second, called
no tobacco control (NTC), is a quantitative description of predicted smoking behaviors
of males and females in the United States under the assumption that tobacco control
efforts starting mid-century had never been implemented. The third, called complete
tobacco control (CTC), is a quantitative description of predicted smoking behaviors of
males and females in the United States under the assumption that tobacco control
activities yielded perfect compliance, with all cigarette smoking coming to an end in
the mid-sixties. The ATC scenario used inputs derived directly from observed data in
the National Health Interview Surveys (NHIS) and the Substance Abuse and Mental
Health Services Administration (SAMHSA) National Survey on Drug Use and Health.
The NTC scenario used inputs derived by extrapolating from trends in the observed
histories before 1954, i.e., before any tobacco control in the decade leading up to the
publication of the Surgeon General's Report in 1964. The CTC scenario was simulated
by setting cessation rates to one (i.e., transferring all current smokers to former
smokers) and allowing no further initiation starting in 1965 while using the observed
values in earlier years.

DETAIL
The SHG accepts parameters supportive of the three tobacco control scenarios
described above (see Table SGH-I below). The ATC scenario uses initiation, cessation
and smoking intensity (CPD) rates directly derived from the NHIS and SAMHSA
datasets. The NTC scenario uses initiation and cessation rates derived by fitting an age-
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period-cohort model to the ATC rates upto 1954, i.e., before the apperance of any
tobacco control measures, and by projecting those into the future maintaining them
consistent with the patterns observed in 1954. The CTC scenario uses initiation and
cessation rates identical to those of the ATC scenario upto 1965, and then sets the
cessation rates equal to one and the initiation rates equal to zero, i.e., all smokers are
forced to quit in 1965, and no new smokers are allowed to appear thereafter. All
scenarios use smoking dependent other cause mortality (OCD) rates derived from
several sources as mentioned above.

Computational process in the usage of the SHG

The CISNET SHG is implemented in C++ and consists of a single simulation class, that
receives file system paths to five parameter files, four integer pseudorandom number
generator (PRNG) seeds, and an optional immediate smoking cessation year
parameter. The SHG simulation class employs four independent random selection
processes that are implemented via a class-based wrapper of the Mersenne Twister

PRNG.1

Here we briefly describe the outline for computational process in the usage of the SHG:

1. Initialization

a. Load input data

b. Initialize random number streams

3. Start Simulation

a. Validate inputs

b. Determine Initiation Age (if any)

c. Determine Cessation Age (if any)

d. Compute cigarettes smoked per day (CPD) vector for those who initiate

1. Determine smoking intensity group (based on initiation age)

2. Determine CPD based on smoking intensity and age at initiation

3. Determine uptake period and attenuate CPD during uptake period

4. Generate CPD vector from initiation to cessation or simulation cutoff

e. Compute other cause of death (OCD) age

5. Write individual outputs

6. Loop simulation if repeats are specified
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RELEVANT PARAMETERS
The SHG utilizes input data from several sources: the NHIS data from 1965 to 2001, the
SAMHSA data, the Berkeley mortality database cohort life-tables, the National Center
for Health Statistics (NCHS), the Cancer Prevention Study I and II (CPS-I and CPS-II),
and the Nutrition follow-up studies sponsored by the American Cancer Society. The
NHIS and the SAMHSA datasets provide estimates for prevalence of never, former (by
years quit) and current smokers by age and year, and data on smoking intensity (in
terms of the average number of cigarettes smoked per day (CPD)). These data were
used to create implicit initiation and cessation rates. Using the average initiation rate,
the SHG is able to determine the likelihood that a never smoker becomes a smoker. For
those individuals that are smokers, the cessation rates are used to determine the
likelihood that a smoker becomes an ex-smoker. The Berkeley life-tables, combined
with smoking prevalence estimates from NHIS and the relative risks of death for
smokers and former smokers in comparison to never smokers from CPS-I and CPS-II,
are used to produce the probability of death from causes other than lung cancer based
on age, sex, birth cohort, and smoking status. Table SHG-I summarizes the input
source for the SHG for the three CISNET tobacco control scenarios.

Table SHG-I

Inpupt ATC NTC CTC

Initiation rates NHIS Derived Derived

(no new smokers after 1965)

Cessation rates NHIS Derived Derived

(all smokers quit in 1965)

CPD1 NHIS,SMAHSA

OCD2 Berkely life-tables, NCHS, NHIS, CPS-I, CPS-III, Nutrition Follow-up studies

Birth year

(1890-1984)

User Defined

Gender

(Male/Female)

User Defined

Race

(All race)

User Defined

1 Cigarettes smoked per day,2Other Cause of Death

ATC: actual tobacco control, NTC: no tobacco control, CTC: complete tobacco control.
To simulate life histories for individuals using the SHG, for any given run, the
following parameters must be provided:
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Table SHG-II

Parameter Valid Values

Seed value for PRNG used for Initiation, Cessation, OCD1, Smoking

intensity quintile

Integer from -1 to 2147483647

(A value of -1 uses the clock time as the

seed)

Race 0 = All Races

Sex 0=Male, 1=Female

Year of Birth Integer from 1890 to 1984

Immediate Cessation year2 0 or Integer from 1910 to 2000

Repeat3 Integer >1 (number of times to repeat

simulation)

File paths to Initiation,Cessation, OCD,

Smoking intensity quintile and CPD4 data files

As derived from NHIS depending on the

scenario

1Other cause of death, 2 This variable is set to 0 except for CTC scenario. To apply immediate smoking

cessation for CTC scenario, the year for immediate cessation must be supplied to the simulator. If the year

value supplied is 0, immediate cessation will not be used in the run. If a year value is supplied, immediate

cessation will occur on January 1st of year provided. 3Key is optional and can be excluded. If the Repeat value

is included and is not a vector value, each set of parameters will be repeated by the amount specified. If the

Repeat value is included and is a vector value, the repeat value will pertain to the value set that it corresponds

to. 4Cigarettes smoked per day.

DEPENDENT OUTPUTS
The inputs of the SHG are used to simulate life histories (up to age 84) for individuals
born in the United States between 1890 and 1984. These life histories include a birth
year, and age at death from causes other than lung cancer, conditioned on smoking
histories. For each simulated individual, the generated life histories include whether
the individual was a smoker or not and, if a smoker, the age at smoking initiation, the
smoking intensity in cigarettes per day (CPD) by age, and the age of smoking
cessation. Smoking relapse, the probability that a former smoker starts smoking again,
is not modeled. Table SHG-III summarizes the output of the SHG. Fig. SHG-1 shows
two examples of smoking histories simulated by the SHG; a) an individual born in 1910
who begins smoking at age 17, quits at age 56 and dies at age 67 due to causes other
than lung cancer, and b) an individual born in 1920 who begins smoking at age 22 and
dies at age 53 due to causes other than lung cancer.

Table SHG-III

Table SHG-III

Initiation Age Age at smoking initiation

Cessation Age Age at smoking cessation

OCD1 Age Age at death from cause other than lung cancer

Smoking

History

Smoking intensity quintile (5 quintiles ranging from light to heavy smoking), Yearly smoking dose

(CPD2)

1Other cause of death, 2Cigarettes smoked per day.
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Figure SHG-1: Examples of the SHG-Generated Events

Simulation results by the SHG can be formatted in four different ways:

1. Text (formatted, human readable text depicting smoking history);

2. Tab Delimited Data (plain text, suitable for post-processing);

3. Annotated text-based timeline (visual representation in text);

4. XML (plain text, suitable for parsing). The outputs from the SHG are made up of
individual life histories, each of which includes the following variables: birth
year, age of smoking initiation, the corresponding smoking intensity (CPD) by
age, age of smoking cessation, and age at death from causes other than lung
cancer, conditioned on smoking histories.

REFERENCES:
1 Matsumoto M., Nishimura T. “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator.” in ACM
Transactions on Modeling and Computer Simulation 1998; 8: 1: 3-30
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POPULATION COMPONENT

SUMMARY
We use individual level simulation of the full US population stratified by single year
age and birth year, and gender.

OVERVIEW
The purpose of the population component was to model smoking and other cause
mortality in the US. The Smoking History Generator provided simulated individual
histories, including birth year, age and smoking intensity at start of smoking, and ages
and intensities at subsequent ages when smoking habits changed or when smoking
stopped, and projected age of other cause death.

QUANTITATIVE DESCRIPTION
We use individual-based microsimulation of the full US population stratified by single
year age and birth year, and gender. These smoking histories were sampled and used
to build up a synthetic population that matched the full US population binned by
single year ages 30-84 and calendar years 1975-2000. The TSCE model (a Markov
transition model at the cellular level) was applied to each of the time-dependent
smoking histories to estimate lung cancer deaths. This was combined with a statistical
model representing additional age, period, and birth cohort effects, based on the
stratification of the US population by age and calendar year.

POPULATION DYNAMICS
The TSCE model relates smoking to cell dynamics from birth to death for each
individual in the population. However, changes in lung cancer over time in the US
population were not fully captured by the TSCE model. Thus we made a second
calibration by estimating additional period and birth cohort effects. These factors may
adjust for model misspecification, effects of changing cigarette composition, changing
demographics, and other exposures and environmental factors.

RECURRENCE
The FHCRC model represents lung cancer mortality, not detection or recurrence.
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NATURAL HISTORY COMPONENT

SUMMARY
The FHCRC lung model represents lung cancer development as a stochastic (two-
stage) cellular process that is influenced by an individual's smoking history.

OVERVIEW
The natural history component relates the probability of lung cancer mortality to each
individual's smoking history using the biologically-motivated TSCE model. In the
TSCE model, smoking influences the carcinogenic process throughout life, with the
model representing survival until occurrence of a first malignant cell. A lag time is
used to represent time from first malignant cell to lung cancer death (Survival
Mortality Component). The natural history model builds on the (Population
Component) that simulates the full US population based on simulated individual
smoking histories and date of other cause mortality. The natural history provides
estimates of US lung cancer mortality by age, gender and calendar year. These
estimates from the natural history component are further adjusted by calendar year
and birth cohort (Survival Mortality Component).

DISEASE STAGES
The TSCE model represents carcinogenesis as a lifeling process consisting of initiating
mutations, clonal expansion of initiated cells, and malignant conversion. In the TSCE
model, malignant conversion is defined as occurrence of the first malignant cell. The
probability of lung cancer is related to the evolving joint probability distribution of
these different cells throughout life. There is no explicit definition of disease stages in
this model.

DISEASE GROWTH
We model the probability distribution for discrete cells as described above, allowing
almost continuous growth of the intermediate lesions that consist of initiated cells.

STAGE TRANSITION TRENDS
The cell birth, death, and mutation in the carcinogenic process naturally give rise to
changing transition rates because any cell in the increasing mass of intermediate cells
can mutate to give rise to cancer. Thus in general, the effective rates increase with age,
even if the rates for a single cell are held constant.

REGRESSION
The model allows for disease regression as pre-malignant clones may become extinct
through random process of cell death.
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SURVIVAL MORTALITY
COMPONENT

SUMMARY
This document describes how survival and mortality are modeled.

OVERVIEW
The TSCE model (See Natural History Component) represents cellular dynamics
during carcinogenesis until occurrence of the first malignant cell. Thus it is necessary to
include a lag time, or distribution of lag times, to represent the time from first
malignant cell to lung cancer death. Further adjustments to lung cancer deaths in the
US population are modeled as calendar year and birth cohort effects.

SURVIVAL ESTIMATION COVARIATES
Survival and mortality depend on disease progression according to the TSCE natural
history model, combined with a statistical model representing additional age, period,
and birth cohort effects.

OTHER CAUSE MORTALITY
The Smoking History Generator was developed to reflect historical smoking trends
and rates for other cause mortality in the US population. The FHCRC lung cancer
model used the simulated individual smoking histories including the age of other
cause death provided by the SHG.
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OUTPUT OVERVIEW

SUMMARY
This document describes the types of outputs generated by the FHCRC lung cancer
model.

OVERVIEW
The FHCRC lung cancer model provides estimates of lung cancer deaths in the US
population by gender, age, and calendar year, given historical smoking patterns or
alternative (counter-factual) smoking scenarios.

OUTPUT LISTING

1. Project One : Biological parameters and dose-response parameters related to
smoking exposure in the TSCE model (See Table3)

• back ground initiation rate

• back ground division rate of an initiated cell

• back ground net cell proliferation rate of an initiated cell

• back ground malignant conversion rate

• two parameters regarding dose-response effect for the division rate and the net
cell proliferation rate

• two parameters regarding dose-response effect for the malignant conversion rate

• lag time parameter for the progression (assumed 5 years)

These estimates for pre-malignant cellular kinetics relate directly to the commonly
reported lead time from smoking exposure to lung cancer, and to the growth rate of
pre-malignant lesions. Validation of these rates included comparison with calibration
to other cohorts. These outputs were the basis for estimating the relation between
smoking and lung cancer in the simulation of the US population (Project Two).

2. Project Two : Parameters for secular time trends in both TSCE-PC model and
TSCE-APC model

• calendar year effects (calendar years from 1975 to 2000) (Figure2 and Figure3)

• birth cohort effects (birth cohorts 1890-1894,1895-1899,....,1960-1964,1965- for AC)
(Figure4 and Figure5)

• additional age effects in the TSCE-APC model (Figure6)

3. Lung Smoking Base Case: Model outputs in both TSCE-PC model and TSCE-
APC model
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• Age-standardized lung cancer mortality rates (using the 2000 US standard
population, Census P25-1130) by calendar year for US males and US females for
three different smoking scenarios (ATC, NTC, CTC) (For ATC case, see Figure7
and Figure8. Figures for NTC and CTC cases will be available in the forthcoming
paper)

• Avoided lung cancer deaths resulted from the actual tobacco control ( # lung
cancer deaths in NTC # lung cancer deaths in ATC) (Figures will appear in the
forthcoming paper)

• Avoidable lung cancer deaths by assuming all smoking stops in 1965 ( # lung
cancer deaths in ATC # lung cancer deaths in CTC) (Figures will appear in the
forthcoming paper).

These estimates for lung cancer deaths, stratified by gender, age and calendar year,
may be converted to stratum specific lung cancer rates by dividing by population
counts within each stratum. Estimates of avoided and avoidable deaths were compared
against historical outcomes for lung cancer mortality in the US to provide some
indication of the benefit of the US Surgeon General's warnings about the dangers of
smoking, and also an upper limit to the potential benefits of additional efforts at
reducing tobacco consumption.
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RESULTS OVERVIEW

SUMMARY
This document summarizes results from calibration of the FHCRC lung cancer model
to cohort data (Project One) and application to understand the effects of smoking on
lung cancer mortality in the US population (Project Two).

OVERVIEW
The FHCRC lung cancer model used the TSCE model incorporating the mechanisms of
initiation, promotion and malignant conversion in carcinogenesis to analyze lung
cancer mortality in five large cohorts; the British Doctors’s, CPS I and II, HPFS and
NHS cohorts (Project One). The parameter estimates from calibration to lung cancer
mortality using these cohorts are closely tied to the model purpose of understanding
the underlying biological mechanisms that relate tobacco smoke to lung cancer in the
US population (Project Two).

By fitting the model to these cohorts data, we estimated the biological parameters
related to age-specific cancer rates and dose-response parameters related to smoking
exposure. The key biological parameters are the rate of initiation, the rates of cell
division and apoptosis/differentiation of initiated cells, and the rate of malignant
conversion of initiated cells. Progression from the first appearance of malignancy to
death from lung cancer is modeled as a constant lag time. And the effect of smoking
habits on age-specific lung cancer mortality is modeled via a dose-response function on
each of these parameters. Based on the likelihood approach, we chose the most
parsimonious model which is consistent with these cohorts data, and summarized the
list of parameters in the final model here.

We began the model calibration to each cohort assuming that smoking could influence
promotion, initiation, or malignant conversion. This is called the full model. After
optimization of the full model, we progressively eliminated parameters that did not
significantly contribute to the likelihood. This is called the reduced model (refer to
Table1).

We found that the contemporaneous CPS-I and British doctors cohorts could be fit with
all but one parameter in common. The CPS-II cohort was followed about 20 years later,
and represented individuals smoking newer cigarettes. The CPS-II cohort dose-
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response differs from the earlier cohort by having no significant effect of cigarette
smoking dose-response on initiation, but a larger dose-response on promotion than
found in the CPS-I cohort (for details, refer to the paper by Hazelton et al. 2005, See
Table2). The HPFS and NHS cohorts are in the similar period as the CPS-II cohort, and
we found no significant effect of smoking dose-response on initiation, which is
consistent with the CPS-II cohort. However, we found significant effect of smoking
dose-response on promotion as well as malignant conversion in the HPFS and NHS
lung cancer mortality cohorts (refer to Table3).

The FHCRC lung cancer model combines the TSCE model, which was calibrated to the
lung cancer mortality in the HPFS cohort for males and the NHS cohort for females,
with US population-based adjustments for secular time trends (period and birth cohort
in the TSCE-PC model, and additional age, period and birth cohort in the TSCE-APC
model). The NCI's SHG can simulate individual-level smoking histories and generate
cohorts of individuals for different smoking scenarios. We use the FHCRC lung cancer
model to predict lung cancer mortality for various smoking scenarios using the cohorts
generated by the SHG.

Three smoking scenarios are explored in the Lung Smoking Base Case study.

1. Actual tobacco control (ATC): Due to the increasing information about the
harmful effects of smoking on the public health, including the US Surgeon
General’s report about the risk of smoking around 1964, smoking habits have
been changed in the US over last several decades starting in the early 1950s. The
SHG generated individuals with smoking histories mimicking actual smoking
trends in the US population.

2. No tobacco control (NTC): To investigate the effects of tobacco control on lung
cancer mortality, individuals with comparative smoking histories by assuming
that no tobacco control occurred were generated by the SHG.

3. Complete tobacco control (CTC): To explore the maximum potential benefits
from tobacco control on lung cancer mortality, the SHG generated individual
histories that all smokers quit smoking in 1965 and no individuals began
smoking after that.

There are two separate cohorts generated by the SHG and we present the results for
both cohorts.

1. Empirical Cohorts (EC): Starting with birth cohort 1900, based on empirical data

2. All Cohorts (AC): Starting with birth cohort 1890, involves extrapolated
smoking history data

RESULTS LIST
PROJECT 1 -TSCE SMOKING NATURAL HISTORY MODEL OUTPUT

During the calibration of the TSCE natural history model to different lung cancer
mortality cohorts [See Project One], we found that smoking exposure tends to increase
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rates of mutation, and more importantly, smoking significantly increases the growth
(promotion) of initiated cells, leading to increased net cell proliferation rates of pre-
malignant cells, and a subsequent rise in risk for lung cancer.

The FHCRC group chose to use the lung cancer mortality calibration of the TSCE
model to the HPFS cohort for males and the NHS cohort for females that were
performed as the first project [Project One]. This TSCE model calibration was used as
the primary component in constructing the FHCRC lung cancer model. The HPFS
(1986-2002) and NHS (1976-2000) cohorts calibration was chosen on the basis that these
cohorts may take account for the risks from current cigarette compositions, and may
well represent the contemporary US lung cancer trend and demographics for the Lung
Smoking Base Case, which are ranged over the period 1975-2000. Furthermore these
cohorts have information for former smokers as well as never and current smokers,
with extensive cross tabulation of lung cancer deaths and population at risk by gender,
race, age, duration of smoking, and smoking rate. Because of the explicit information
for former smokers, these cohorts may be adequate to reflect the impact of quitting
smoking on lung cancer mortality. To compensate for possible limitations of the
cohort-calibrated TSCE model, the FHCRC group introduced additional age, period,
and birth cohort effects when calibrating to lung cancer mortality in the US population.

PROJECT 2 - OUTPUTS OF ADDITIONAL AGE, PERIOD, AND BIRTH COHORT
ADJUSTMENTS IN LUNG SMOKING BASE CASE

For the Lung Smoking Base Case (see Project Two) the expected number of lung cancer
deaths were calculated from the cohort-calibrated TSCE model, using the individual
histories generated by the NCI's SHG that were selected to fill up the full US
population table by single year of age from 30 to 84, and calendar years from 1975 to
2000. The outputs from the additional age, period, and birth cohort adjustment consist
of a set of parameters (see Parameter Overview) to optimize the FHCRC lung cancer
model projections to observed US population counts and numbers of lung cancer
deaths by gender and single year of age from 30 to 84, and calendar years from 1975 to
2000. The Lung Smoking Base Case [Project Two] study utilizes calibration to a lung
cancer mortality cohort [Project One] that includes background, dose-response, and lag
time parameters relating to the effects of smoking to lung cancer mortality. These
parameters are used in calibrating to US population and lung cancer mortality data.
Outputs from this process include projections of lung cancer mortality by single years
for ages 30-84, and calendar years 1975-2000. In the Lung Smoking Base Case, we
predict the number of avoided deaths from lung cancer under the actual tobacco
control scenario compared to no tobacco control scenario, and also the potential
avoidable deaths from lung cancer if all smokers quit smoking in the year 1965, and no
one started smoking after that. The explicit results from the Lung Smoking Base Case
will appear in the forthcoming paper.
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PROJECT ONE
The first project consisted of calibrating a natural history model to substantial US
smoking cohorts to model the probability of lung cancer death at different ages in
terms of an individual’s smoking behavior up to that age. The two stage clonal
expansion (TSCE) model was chosen to represent the natural history of lung cancer
(Moolgavkar and Venzon, 1979; Moolgavkar and Knudson, 1981). The TSCE model is a
stochastic model that represents the processes of initiation, promotion, and malignant
conversion during carcinogenesis. The TSCE model parameters were calibrated to lung
cancer mortality among never and current smokers in the American Cancer Society
CPS-I and CPS-II cohorts and also the British Doctors cohort from the UK (Hazelton et
al., 2005). We also calibrated the model to lung cancer incidence (Meza et al., 2008) and
mortality in the prospective Health Professionals Follow-up Study (HPFS) and the
Nurses' Health Study (NHS) cohorts. These calibrated natural history model
parameters were shared with other CISNET lung cancer modeling groups for use in
modeling US lung cancer mortality. The TSCE model provided excellent fits to the data
representing smoking histories for individuals in the different cohorts. The FHCRC
lung group's use of these natural history parameters is discussed in more detail below.

The natural history model calibrations to different cohorts allowed us to compare
estimates for the effects of tobacco on lung cancer through analysis of incidence (HPFS
and NHS) or mortality (CPS-I, British Doctors, CPS-II, HPFS and NHS). Follow-up for
the CPS-I and British Doctors cohorts occurred about 20 years prior to CPS-II, HPFS
and NHS, allowing us compare the effects of earlier versus later cigarette compositions.
In general, all models indicated that the most important dose-response effect of tobacco
smoke is on promoting the growth (increasing the clonal expansion rate) of pre-
malignant cells. This promotion effect is slightly stronger in the CPS-II, HPFS, and
NHS analysis with the more recent (lower tar and nicotine) cigarette compositions.
Lung cancer risk is also slightly increased by an influence of smoking on initiation, but
this effect is insignificant in the newer cigarettes.

Other factors outside the natural history model's domain influence the lung cancer
mortality rates in the US population. First, individuals in the US smoking cohorts are
not fully representative of the US population. Second, the composition of cigarettes has
changed substantially over time. Third, other exposures and environmental factors
may contribute to lung cancer risk. In addition, the TSCE model consists of only two
stages, whereas the lung cancer process is biologically complex, and progresses along
many pathways. Thus, the TSCE natural history model may not be capable of fully
capturing the effects of smoking on the subsequent risk of lung cancer. Therefore, in
addition to the biologically based smoking model, we introduce additional age, period,
and birth cohort effects to adjust for these other factors when calibrating the FHCRC
lung cancer model to US lung cancer mortality data.
See Also: Project One, Project Two
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PROJECT TWO
Each CISNET lung cancer modeling group has developed age-specific models of US
lung cancer mortality trends for ages 30-84 and calendar years 1975-2000. This
comparative modeling effort of different groups is called the Lung Smoking Base Case.
The FHCRC lung cancer modeling group chose to use the TSCE natural history model,
calibrated to relate smoking histories to lung cancer mortality, as the central element in
addressing the Lung Smoking Base Case. However, the FHCRC group found that
additional age, period, and birth cohort effects were needed to account for changes in
cigarette composition over time, other factors that contribute to lung cancer, and
limitations of the TSCE natural history model. This combination of biologically based
modeling, combined with statistical adjustments for additional age, period, and birth
cohort, constitutes the FHCRC lung cancer model. The FHCRC lung cancer model was
subsequently used to evaluate the impact of public health messages on lung cancer
trends and life years lost (or gained) under alternative tobacco consumption scenarios.

Smoking is the most significant risk factor in modeling US lung cancer trends. The
Smoking History Generator (SHG) provided by the National Cancer Institute (NCI)
was used to generate individuals with simulated smoking histories. We developed
software to sample and combine these simulated individuals to imitate the full US
population table for each calendar year (ranging from 1975 to 2000) and age bin
(ranging from 30 to 84) separately for males and females. Then the cohort-calibrated
TSCE natural history model was applied to each of these simulated individuals with
smoking histories to calculate the expected lung cancer deaths in each cell of the US
population table for males and females. However, comparison of the number of
expected lung cancer deaths against the number of observed lung cancer deaths in each
cell revealed discrepancies and apparent age, period, and birth cohort trends are not
fully accounted for by the model.

Factors other than smoking influence US lung cancer mortality trends. Although the
TSCE natural history model accounted for most lung cancer deaths observed in the US,
additional age, period, and birth cohort factors were required to accurately represent
the detailed lung cancer mortality outcomes in the US population. Thus, we did further
calibration by applying additional age, period, and birth cohort effects to the modeled
US lung cancer mortality rates by the TSCE natural history model to match the
observed US lung cancer mortality rates.

IMPACT OF PUBLIC HEALTH MESSAGES ON US LUNG CANCER MORTALITY
It is generally thought that increasing US lung cancer trends slowed, and even
decreased, in response to increasing public awareness during the 1960's and later about
the dangers of smoking (Irvine et al., 2006; Musk et al., 2003). This public knowledge
came from many sources, including statements of the US Surgeon General about the
risk of smoking (Parascandola et al., 2001, 2006).

See Also: Project One, Project Two
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TSCEMODEL DETAILS
The TSCE model is a mathematical model that represents the carcinogenic process by
tracking the probability distribution for the number of cells on the pathway to cancer.
The model assumes that any of the normal stem cells in lung may undergo, at random,
a first mutation step (called initiation) at rate during the course of cell division to
create an initiated cell. Each initiated cell may undergo cell division at rate or cell
death at rate . A random second mutation event may occur at rate as any of the
initiated cells undergo cell division, producing a malignant cell. After occurrence of the
first malignant cell, a lag time is used to represent the time between the appearance of
the first malignant cell and lung cancer mortality (See Figure1).

Let be the exposure dose to smoking at age . Then we assume that initiation,
promotion, and malignant conversion rates may be altered during periods of
exposures through flexible dose-response relationships:

where represents a biological parameter in the model, is the background
parameter, and and are the dose-response coefficients corresponding to smoking.
Closed form expressions for the hazard and survival function of the TSCE model are
known in the case of piecewise constant parameters (Heidenreich et al., 1997).

where is the number of normal stem cells, is the number of age-periods with
different parameter values before age ; denote the end-points
of the age-period, is the smoking-dose during the age-period, , and

, , , denote the parameter values during the age-period, and
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These equations may be used to calculate the TSCE model survival and hazard
at any time .

If we assume a constant or gamma lag time between the appearance of the first
malignant cell and lung cancer death, the survival probability at age of an individual
with smoking history , , is given by

where denotes the vector of identifiable model parameters given the smoking
history , and is the gamma density. We calculate the probability for lung cancer
mortality in each single year of age for the individual, given the gender and the full
smoking history of the individual. During calibration to smoking cohort data, the
study follow-up times and known outcome for each individual (death from lung
cancer, or study censoring) were combined with the model probabilities for individual
death from lung cancer at each age to form an individual likelihood.
The individual likelihood depends on time of entry into the study
, censoring or failure time , and on detailed smoking exposure histories in conjunction
with general dose-response models for the biological parameters in the TSCE model,
and on the lag time or lag time distribution. We assume that each individual is lung
cancer free at the beginning of the study, . The individual likelihoods for cases and
survivors, including left truncation, are given by

where the prime denotes derivative with respect to .
Assuming independence between individuals, the cohort likelihood is the product of
individual likelihoods over all subjects ,
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Gradient search methods (Bhat FORTRAN software library, Luebeck 2009) were then
used to maximize the likelihood, leading to a set of model parameters that relate
individual histories to the probability of death from lung cancer at each age.

TSCE SMOKING NATURAL HISTORY MODEL INPUTS

Individual histories include gender, age at start smoking (if a smoker), beginning
smoking rate (number of cigarettes per day), age at each change in smoking habit, and
smoking rate during each of these periods, the age at quit smoking (if that occurs), age
at entry into the study, age at lung cancer death or end of study follow-up. These
individual history inputs were input from the cohort records during calibration to
smoking cohort data [see Project One].

The TSCE-PC and TSCE-APC model calibrations utilized histories generated by the
NCI provided Smoking History Generator (SHG) to fill up the full US population
tables by gender and single year of age from 30 to 84, and calendar years from 1975 to
2000. The TSCE natural history model used the simulated smoking history inputs for
individuals that contributed to each cell of the simulated US population table to
calculate the expected number of lung cancer deaths by single year of age and calendar
year.

INPUTS FOR MODEL CALIBRATION IN LUNG SMOKING BASE CASE

Assume lung cancer mortality data is in tabular form for age groups and
calendar years. For age group , the number of lung cancer deaths during

calendar year can be assumed to follow a Poisson distribution with mean .

We consider two calibration approaches:

1. Age-Period-Cohort model (TSCE-PC model):

where is the mean of the age group, and are coefficients that adjust for
birth cohort and calendar year (period) effects, respectively, is the person years at
risk, and represents the hazard function of the TSCE natural history model with
lag time evaluated at age .

2. Age-Age-Period-Cohort model (TSCE-APC model):

where is the coefficient that adjust for additional age effect for the age group,
and other variables are the same as above.
The overall likelihood for the observed lung cancer mortality in all age-calendar year
groups is given by
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where is the number of lung cancer deaths in the age group during calendar
year .
The parameters in the TSCE natural history model were estimated by calibrating to
lung cancer mortality cohorts [refer to the Project One]. And these estimated
parameters are used in the calculation of . Thus the above likelihood is used to
estimate the secular terms: period and birth cohort effects in the TSCE-PC model, and
additional age, period and birth cohort effects in the TSCE-APC model. Note in these
two models, `TSCE' refers the age effect calculated from the TSCE model.
In the Lung Smoking Base Case study, the inputs for model calibration consist of US
population counts and numbers of lung cancer deaths by gender and single year of age
from 30 to 84, and calendar years from 1975 to 2000.
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FIGURE2

Figure 2: Calendar year effects (1975-2000). AC: all cohorts starting with birth cohort
1890, involves extrapolated smoking history data. Age-Period-Cohort model is used.
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FIGURE3

Figure 3: Calendar year effects (1975-2000). AC: all cohorts starting with birth cohort
1890, involves extrapolated smoking history data. Age-Age-Period-Cohort model is
used.
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FIGURE4

Figure 4: Birth cohort effects (birth cohorts 1890 − 1894, 1895 − 1899, ...., 1960 − 1964,>=
1965). AC: all cohorts starting with birth cohort 1890, involves extrapolated smoking
history data. Age-Period-Cohort model is used.
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FIGURE5

Figure 5: Birth cohort effects (birth cohorts 1890 − 1894, 1895 − 1899, ...., 1960 − 1964,>=
1965). AC: all cohorts starting with birth cohort 1890, involves extrapolated smoking
history data. Age-Age-Period-Cohort model is used.
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FIGURE6

Figure 6: Additional age effects. AC: all cohorts starting with birth cohort 1890,
involves extrapolated smoking history data. Age-Age-Period-Cohort model is used.
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FIGURE7

Figure 7: Age-standardized lung cancer mortality rates (using the 2000 US standard
population, Census P25-1130) by calendar year. Diamond points represent the age-
standardized lung cancer mortality rates in the observed US lung cancer mortality
data, and the green line is the model prediction. AC: all cohorts starting with birth
cohort 1890, involves extrapolated smoking history data. EC: empirical cohorts starting
with birth cohort 1900, based on empirical data. Age-Period-Cohort model is used.
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FIGURE8

Figure 8: Age-standardized lung cancer mortality rates (using the 2000 US standard
population, Census P25-1130) by calendar year. Diamond points represent the age-
standardized lung cancer mortality rates in the observed US lung cancer mortality
data, and the green line is the model prediction. AC: all cohorts starting with birth
cohort 1890, involves extrapolated smoking history data. EC: empirical cohorts starting
with birth cohort 1900, based on empirical data. Age-Age-Period-Cohort model is used.
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FIGURE1

Figure 1: Two-stage clonal expansion (TSCE) model of lung cancer, including initiation,
promotion, malignant conversion, and a lag time from first malignant cell to time of
death from lung cancer.
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updates are completed. The most current version is available at
http://cisnet.cancer.gov/profiles. Note that unlike most PDF documents, the
CISNET model profiles are not suitable for printing as they are not typically
written or read in sequential fashion.

We recommend you let your interests guide you through this document, using the
navigation tree as a general guide to the content available.

The intent of this document is to provide the interested reader with insight into
ongoing research. Model parameters, structure, and results contained herein
should be considered representative but preliminary in nature.

We encourage interested readers to contact the contributors for further
information.

Go directly to the: Reader's Guide.
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READERS GUIDE

CORE PROFILE DOCUMENTATION
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

◦ Smoking History Generator Component

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.
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MODEL PURPOSE

SUMMARY
Brief overview of the purposes driving the development of this model.

PURPOSE
US lung cancer deaths rates have seen dramatic changes in the last twenty years. After
increasing through the 1980s, the age-adjusted mortality rate for men has been
declining steadily from a high of 90 per 100,000 in 1984 to about 70 per 100,000 in

20051. After steep rises in previous decades, the rate of increase for women began to

slow in the 1990s, and has remained at about 40 per 100,000 since 19981. Smoking has
been established as the leading cause of lung cancer deaths, with as much as 90% of the

deaths due to smoking2.

The analysis focuses on the role of smoking in explaining trends in lung cancer deaths
using the Smoking Base Case data. The data contain information on smoking status,
smoking intensity and smoking duration by cohort from 1975 through 2000. We
employ a macro modeling approach that uses data aggregated over ages by year and
gender. To incorporate smoking related factors, we apply smoking models of lung

cancer death rates from past studies8 to lung cancer deaths in terms of smoking
intensity and duration.

The different smoking models yield estimates of lung cancer deaths that vary
considerably among themselves and that vary from observed rates over time. Among
other reasons, this variation may be due to the non-representative data used to
estimate the models and the changing nature of lung cancer risks vis-à-vis smoking,
other non-smoking factors (air pollution, asbestos, eating habits) and their interactions.
Using the predictions from the smoking models, we consider the role of smoking and
non-smoking related trends relative to the predictions of these models. Our model
differs from other models in that it does not specifically distinguish age-period-cohort
effects, but instead focuses on period effects.

The model also considers the role of tobacco control efforts in reducing lung cancer
deaths. Beginning with the Surgeon General’s Report in 1964, efforts have been aimed
at reducing smoking; bans have been placed on certain types of advertising, clean air
laws have been implemented, and higher taxes have been imposed on cigarettes. In
addition to the analysis conducted under actual Tobacco Control (TC), we employ
smoking data generated for the Smoking Base Case to consider the counterfactual cases
of how lung cancer rates would have been affected: 1) in the absence of tobacco control
policies since the early fifties, i.e., No Tobacco Control (NTC), and 2) if all smoking was
terminated in 1965, i.e., Complete Tobacco Control (CTC).

In sum, the purpose of the analyses is three-fold:
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• We compare the predictability of models that examine the relationship of smoking
to lung cancer, and thereby provide independent evaluation of these models in
explaining levels and trends in lung cancer. Because the models use either CPS-I or
CPS-II data, we also indirectly consider how well these two data sets explain lung
cancer death rates.

• We attempt to distinguish smoking and non-smoking related factors in explaining
trends.

• We estimate how many lung cancer deaths have been avoided as a result of
reductions in smoking due to tobacco control efforts implemented since the early
fifties and how many deaths could have been avoided if all smoking had stopped
as of 1965.

REFERENCES:
1 JEMAL, A., THUN, M., RIES, L. A., HOWE, H. L, WEIR, H. K. “Annual Report to the

Nation on the Status of Cancer, 1975-2005, Featuring Trends in Lung cancer,
Tobacco Use, and Tobacco Control” in Journal of the National Cancer Institute
2008;

2 USDHHS “The Health Consequences of Smoking (Atlanta, GA, Centers for Disease
Control and Prevention, National Center for Chronic Disease Prevention and
Health Promotion, Office on Smoking and Health)” 2004;

3 DOLL, R., PETO, R., WHEATLEY, K., GRAY, R., SUTHERLAND, I. “Mortality in
relation to smoking: 40 years' observations on male British doctors” in Bmj
1994; 309: 901-11

4 FLANDERS, W. D., LALLY, C. A., ZHU, B. P., HENLEY, S. J., THUN, M. J. “Lung
cancer mortality in relation to age, duration of smoking, and daily cigarette
consumption: results from Cancer Prevention Study II” in Cancer Res 2003; 63:
6556-62

5 KNOKE, J. D., SHANKS, T. G., VAUGHN, J. W., THUN, M. J., BURNS, D. M. “Lung
Cancer Mortality Is Related to Age in Addition to Duration and Intensity of
Cigarette Smoking: An Analysis of CPS-I Data” in Cancer Epidemiol
Biomarkers Prev 2004; 13: 949-57

6 KNOKE, J. D., BURNS, D. M., THUN, M. J. “The change in excess risk of lung cancer
attributable to smoking following smoking cessation: an examination of
different analytic approaches using CPS-I data” in Cancer Causes Control 2008;
19: 207-19

7 MEZA, R., HAZELTON, W. D., COLDITZ, G. A., MOOLGAVKAR, S. H. “Analysis
of lung cancer incidence in the Nurses' Health and the Health Professionals'
Follow-Up Studies using a multistage carcinogenesis model” in Cancer Causes
Control 2008; 19: 317-28

8 HAZELTON, W. D., CLEMENTS, M. S., MOOLGAVKAR, S. H. “Multistage
carcinogenesis and lung cancer mortality in three cohorts” in Epidemiol
Biomarkers Prev 2005; 14: 1171-81
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MODEL OVERVIEW

PURPOSE
See Model Purpose for details on the purposes behind this study.

BACKGROUND
The relationship of smoking to lung cancer has been established by biological and

epidemiological studies1. At a population level, lung cancer has been strongly linked to
the smoking dose, both in terms of cigarettes smoked per day and the number of years

smoked7. These studies are based primarily on large cohort studies, such as the Cancer
Prevention Study CPS)-I, and the CPS-II. These data, however, over-represent the

middle class, married, Whites, and more educated9. In addition, the relative risks of

smoking appear to be changing over time10.

We use the empirical models from 7 different studies of the smoking-lung cancer

relationship7 to predict lung cancer deaths over time. The estimates of lung cancer
deaths obtained from inserting historical smoking rate base case data into the models
are then compared to historical lung cancer deaths over time using regression analysis.

The smoking models7 are also used to estimate lung cancer rates: 1) in the absence of
tobacco control policies since the early fifties (NTC), and 2) if all smoking was
terminated in 1965 (CTC). These results are calibrated using the regression analysis
from the historical lung cancer case. Finally, we estimate the number of lung cancer
deaths avoided as a result of reductions in smoking due to tobacco control efforts and
how many deaths could have been avoided if all smoking had stopped as of 1965.

MODEL DESCRIPTION
A macro-modeling approach is adopted to explain consider male and female lung
cancer rates. Smoking Base Case data is employed for populations, lung cancer death
and smoking data. The analysis is confined to ages 30-84 and the years 1975-2000.

The smoking data are applied to a series of different smoking models from the

literature7. Each of the smoking models is a set of equations, as described in the Model
Components sections (Component Overview) that relate smoking characteristics to
lung cancer death rates. Separate equations are applied to the never, current and
former smoker populations to estimate the lung cancer deaths for each gender and age
group. For former smokers, individuals are further distinguished by years quit. For
current or former smokers, Deaths are related to smoking intensity and duration.

The smoking models yield estimates of lung cancer deaths that differ from observed
rates. We fit the predicted rates from the models to historical lung cancer death rates
over time, using a method which distinguishes smoking-related and non-smoking-
related factors. These analyses are conducted at the aggregated level over all ages by
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year, as well as by age. The models are compared in terms of their predictive abilities,
as well as their ability to distinguish smoking factors from non-smoking factors. The
fitted equations also serve to calibrate the models to actual rates (with past tobacco
control efforts, ATC).

To examine the results of tobacco control efforts, we use the smoking models to predict
lung cancer deaths under the two counterfactual scenarios of no tobacco control (NTC)
and complete tobacco control (CTC). The uncalibrated results are obtained by applying
base case data for each of the counterfactual cases to each the smoking models. The
results for the Counterfactual cases are calibrated by applying the results from the
fitted TC models to predictions from the smoking models for the counterfactual cases.

Using each of the smoking models model, we compare the calibrated and un-calibrated
predicted lung cancer death rates under the three scenarios: actual tobacco control,
complete tobacco control and no tobacco control. Multiplying by population, we obtain
lung cancer deaths by age and gender. The difference between the deaths under the
ATC and NTC scenarios is the lives saved as a result of actual tobacco control. The
difference between in deaths between the ATC and CTC scenarios is the number of
lives that could be saved if smoking were eliminated in 1965. Summing over age
groups yields total lives saved by gender.

REFERENCES:
1 USDHHS “The Health Consequences of Smoking (Atlanta, GA, Centers for Disease

Control and Prevention, National Center for Chronic Disease Prevention and
Health Promotion, Office on Smoking and Health)” 2004;

2 DOLL, R., PETO, R., WHEATLEY, K., GRAY, R., SUTHERLAND, I. “Mortality in
relation to smoking: 40 years' observations on male British doctors” in Bmj
1994; 309: 901-11

3 FLANDERS, W. D., LALLY, C. A., ZHU, B. P., HENLEY, S. J., THUN, M. J. “Lung
cancer mortality in relation to age, duration of smoking, and daily cigarette
consumption: results from Cancer Prevention Study II” in Cancer Res 2003; 63:
6556-62

4 KNOKE, J. D., SHANKS, T. G., VAUGHN, J. W., THUN, M. J., BURNS, D. M. “Lung
Cancer Mortality Is Related to Age in Addition to Duration and Intensity of
Cigarette Smoking: An Analysis of CPS-I Data” in Cancer Epidemiol
Biomarkers Prev 2004; 13: 949-57

5 KNOKE, J. D., BURNS, D. M., THUN, M. J. “The change in excess risk of lung cancer
attributable to smoking following smoking cessation: an examination of
different analytic approaches using CPS-I data” in Cancer Causes Control 2008;
19: 207-19

6 MEZA, R., HAZELTON, W. D., COLDITZ, G. A., MOOLGAVKAR, S. H. “Analysis
of lung cancer incidence in the Nurses' Health and the Health Professionals'
Follow-Up Studies using a multistage carcinogenesis model” in Cancer Causes
Control 2008; 19: 317-28

7 HAZELTON, W. D., CLEMENTS, M. S., MOOLGAVKAR, S. H. “Multistage
carcinogenesis and lung cancer mortality in three cohorts” in Epidemiol
Biomarkers Prev 2005; 14: 1171-81

8 GARFINKEL, L. “Selection, follow-up, and analysis in the American Cancer Society
prospective studies” in Natl. Cancer Inst. Monogr. 1985; 67: 49-52

9 STELLMAN, S. D., GARFINKEL, L. “Smoking habits and tar levels in a new
American Cancer Society prospective study of 1.2 million men and women” in
J. Natl. Cancer Inst. 1986; 76: 1057-1063

10 THUN, M. J., HEATH, C. W., JR. “Changes in mortality from smoking in two
American Cancer Society prospective studies since 1959” in Prev Med 1997; 26:
422-6
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ASSUMPTION OVERVIEW

BACKGROUND
The base case data is based on the large National Health Interview Survey (NHIS). The
comparison of the Tobacco Control (ATC) No Tobacco Control (NTC), and Complete
Tobacco Control (CTC) is dependent on the assumptions made in deriving the
smoking data generated for the base case. Assumptions regarding the development of
the Base Case data are described in the Base Case Description. We focus here on
assumptions made in the application and at each of the three steps at each of analysis:
1) application of the smoking models, 2) Calibration/validation of the models, and 3)
Application of the Models to the Counterfactuals.

LIST OF ASSUMPTIONS

Smoking Models

• The smoking models incorporate all relevant smoking characteristics, namely
smoking intensity, smoking duration and years quit.

• The smoking models are time invariant. Studies indicate that relative risks may
have changed over time, e.g., due to non-smoking related factors (radon or other
indoor or outdoor pollution), composition of cigarettes, which is considered at a
later step

• Non-linearities are captured at the age level. Because the models were estimated
by age group (as defined by the Base Case data), we captured non-linearities as
they apply to different ages. However, nonlinearities are implied by the different
models within age groups due to the variation of duration and intensity among
those a particular age group. Since duration and intensity are likely to be
correlated, data on their joint distributions would be required to accurately
capture these effects.

• Except for age and gender-related differences, the effects are homogeneous across
socio-demographic groups. Some previous studies indicate important differences

in lung cancer rates and the role of smoking by race1, but the base case data and
smoking models employed do not distinguish by race.

Assumptions related to specific models

• The TCSE equations were estimated only for Whites, and therefore may be biased
as applied to other populations.

• Knoke et al. did not estimate equations for females and limited their analysis to the
White population.

• Flanders used data for all racial-ethic groups, and thus may be subject to
aggregation bias across racial-ethnic groups. Flanders has no former smoker
equation, so the male former smoker equation from Knoke et al. was used to
capture the decline in risk with years quit for male and female smokers.

Calibration/Validation of the Model
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• The models were calibrated over the entire range of years and ages. Consequently,
results could only be compared across models and could not be validated for
individual models. The calibration equations assumed a specific form, whereby
trends in smoking and non-smoking related factors are captured by quadratic
equations.

• The effects of smoking are assumed to be captured by the smoking models. In
particular, smoking effects by age and cohort are assumed to be captured by the
smoking models.

• The calibration equations assumed a specific functional form, whereby log vs.
linear and liner vs. quadratic forms are considered.

Application of the Models to the Counterfactuals
As indicated above, important assumptions are made in developing the base case data
on smoking rates, as discussed in the Base Case Data description. Assumption made in
our analysis include:

1. The smoking models can be applied to smoking rates outside the usual ranges.
The results from the smoking models may be sensitive to functional form in
moving to smoking rates that deviate from the historical, especially for the CTC
models which are sensitive to number of years quit. With large changes in the
percent of the population smoking, changes in the likelihood of second hand
smoke exposure may affect never smoker risks.

2. The calibration of the models developed using historical smoking rates are
assumed to be applicable to the counterfactual cases, where smoking rates are
different. The calibrations may be sensitive to functional form in moving to
smoking rates that deviate widely from the historical rates.

REFERENCES:
1 USDHHS “The Health Consequences of Smoking (Atlanta, GA, Centers for Disease

Control and Prevention, National Center for Chronic Disease Prevention and
Health Promotion, Office on Smoking and Health)” 2004;
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PARAMETER OVERVIEW

BACKGROUND
To predict lung cancer deaths, separate sets of equation are developed using empirical
models from 7 different studies of the smoking-lung cancer relationship. Two sets of
parameters are used to develop the final predictions of lung cancer deaths. The first set
relates smoking characteristics to lung cancer death rates using different empirical
models of the smoking–lung cancer relationship, and the second set is from equations
that relate the predictions from the smoking models to historical lung cancer death
rates.

Once models have been developed for historical lung cancer deaths, the same
empirical models are applied to the counterfactual scenarios (no tobacco control and
complete tobacco control), with the exception that the second set of equations from the
historical lung cancer case is used to calibrate the counterfactuals.

PARAMETER LISTING OVERVIEW
Each of the smoking models is set of equations that relate smoking characteristics to
lung cancer death rates. The smoking characteristics first distinguish whether the
individual is a current, former or never smoker. For smoker smokers, individuals are
further distinguished by years quit. If a current or former smoker, smoking intensity
and smoking duration are considered. Data for the Smoking Base Case were provided
on smoking prevalence, smoking intensity and smoking duration provided by gender,
cohort (aggregated over 5 years beginning in 1900) and year. Smoking prevalence data
were distinguished by 3 smoking categories: never smokers, current smokers, and
former smokers, with former smokers further divided into 5 groups based on how long
ago they quit: 1-2, 3-5, 6-10, 11-15, and 16+ years. Thus, smoking status is defined by 7
categories (never, current and 5 former). The smoking status prevalence rates were
applied to the total population to obtain the number of never, current and former (by
years quit) smokers by age and year.

For smokers and former smokers by years quit, intensity data were provided in terms
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of the average number of cigarettes smoked per day (CPD). Duration of smoking
(DUR) was calculated from average initiation data, as the current age minus the age of
smoking initiation for smokers, with further correction for years quit by former
smokers.

For each measure, we converted the data by (5 year) cohort and year into age groups
by year starting with ages 30-34 and continuing through ages 80-84. To obtain data by
single age, we smoothed (i.e. interpolated) over 5 ages starting at age 32 and ending at
age 82. For ages 30-31 and 83-84, we extrapolated from the two nearest interpolated
ages. Because reliable data were not available for cohorts before 1900, values in the
base case were inferred for missing values of the smoking rate variables for ages 75-84
in the years 1975-1985.

Besides data for historical smoking prevalence, intensity and duration under Actual
Tobacco Control (ATC) as implemented, separate data for each for the variables for the
No Tobacco Control (NTC) and Complete Tobacco Control (CTC). Smoking Base Case
Accordingly, separate data sets by gender, age, and year were created for each of these
scenarios.

Parameter Listings for each model

1. Using models from past studies of the smoking-lung cancer relationship,
Predicted Lung Cancer Rates (PLCR) are estimated as a function of:

• Smoking Status: Current, Former or Former smoker by Age (Base Case Data)

• If Current Former Smoker:

◦ Smoking duration in years (Base Case Data)

◦ Smoking intensity in terms of average number of cigarettes smoked per month
(Base Case Data)

◦ Age

• If Former Smoker:

◦ Same variables as for Smokers with smoking duration and intensity related to
the period when smoking occurred. (Base Case Data)

◦ Years quits

• Using time series analysis, Historical Lung Cancer Rates (Base Case Data) are
related to

• Predicted Lung Cancer Rates (PLCR) examining the following specifications:

◦ Linear vs Log

◦ Prediction, Prediction X Time Trend, Prediction X Time Trend^2

▪ Time-trends correspond to years

• Time-trends independent of smoking predictions examining the following
specifications

◦ Linear vs log

◦ Time trend vs. Time Trend^2 or both
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COMPONENT OVERVIEW

OVERVIEW
The models relate smoking factors to deaths rates. As such they contain a population
and a survival/mortality component.

Population Component
There is not a population model per se with births and deaths. Rather, historical
population data is obtained from Smoking Base Case data from the Census data. The
data used in the model is obtained by year beginning at age 30 and continuing through
age 84, distinguished by gender. The smoking status prevalence rates were applied to
the total population to obtain the number of never, current and former (by years quit)
smokers by age, gender and year.

Survival Mortality Component
Two sets of equations are used to develop the final predictions of lung cancer deaths.
The first set (smoking models) relate smoking characteristics to lung cancer death rates,
and the second set (Prediction And Calibration Equations) takes the predictions from
the smoking models and fits them to historical lung cancer death rates. The fitted
models are applied then applied to the No Tobacco Control and Complete Tobacco
Control Cases.

SMOKING MODELS
We consider three sets of models6, all of which relate lung cancer mortality risk to age,
duration, and intensity of smoking and employ either the CPS-I or CPS-II cohort data.
Using each of these models, we estimate lung cancer death rates for never, current, and
former smokers under each of the three smoking scenarios. An Excel program was
used to conduct the analysis.

Knoke model

Knoke et al.4 estimated separate equations for the absolute lung cancer death risk of
never smokers, smokers and former smokers using only the white, male subpopulation
of the CPS-I. Consequently, we only estimate death rates for males using the Knoke
model.
The lung cancer death rates were estimated in terms of excess risk (ER), where the
mean absolute risk (R) for smokers (S) and former smokers (FS) is added to never
smokers (NS), or:

Knoke et al. modeled the absolute risk of death due to lung cancer in nonsmokers to be
a two-parameter Poisson regression model on attained age, in years:
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They modeled the excess risk of death due to lung cancer in continuing smokers as a
Poisson regression model with modified offset, which they describe as an extended

Doll and Peto model7 as suggested by the multistage theory of carcinogenesis. The
mean excess risk was calculated as follows:

They modeled the lung cancer death rate as a function of years since quit (QT-YRS)
and quit age (QT-AGE) for former smokers as:

The excess smoker risk, , continues to denote the excess risk as if the individual
continued to smoke at the same intensity and duration when that individual quit. They
found that there was no decline in risk for the first two years after quitting. For more
than two years quit, they found no significant effect of CPD with the following
equation:

Flanders Model

Flanders et al.2 used the CPS-II data for all races to estimate separate lung cancer death
rate equations for male and female smokers by 10 year age groups. They did not
estimate equations for never or former smokers.

For smokers’ lung cancer death rates (LMR) for males (m) and females (f), they

estimated equations by gender similar to the Doll and Peto7 models and obtained:

ages 40–49:

ages 50–59:

ages 60–69:

ages 70–79:

The estimates for ages 40-49 are applied to ages 30-39, and the estimates for ages 70-79
applied to ages 80-84.

Because they did not estimate equations for former smokers, we apply the former

smoker equation from Knoke et al.4 to smoker death rates from Flanders to obtain the
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declining death rates of former smokers by years quit. Estimates of deaths rates for

never smokers were obtained from Thun et al.8 based on CPS-II estimates by age and
gender for the White population.

Two stage clonal expansion model
Hazelton et al. (2005) separately applied the two-stage clonal expansion (TSCE) model
to both the CPS-I and CPS-II, thus providing a common model applied for both data
sets. They estimated separate equations for White males and White females. We apply
their model separately by gender and for each of the different data sets, CPS-I and
CPS-II.

Hazelton et al.6 estimated a series of non-linear equations (not reproduced here, but
available in the Appendix to their paper) in terms of the rates of initiation, cell division,
apoptosis of initiated cells, and the rate of malignant conversion of initiated cells under
the TSCE model. These rates are a function of smoking intensity and duration. Due to a
lack of available data, they did not include former smokers in their estimation
equations, but the model provides death risks for that group. The programming for the
estimation equation models were made available to us by the authors as an excel add-
in.

SUMMARY
A total of seven different results are developed using each of the models (4 male and 3
female). The male Knoke et al. model and male and female TSCE CPS-I models use
CPS-I data, while the Flanders et al. male and female models and the male and female
TSCE CPS-II models use CPS-II data. The smoking data are applied by year and age
and by smoking status.

Upon applying the predicted deaths rates by age, smoking status and year to their
respective populations, we obtain the predicted number of lung cancer deaths by age,
smoking status, and year for each of the models. The deaths are summed over the 7
smoking status categories for each model to get predicted total lung cancer deaths by
age and year and then summed over age groups to get lung cancer deaths for all ages.
We divide the number of lung cancer deaths in each age group by their respective age
and year population to obtain lung cancer death rates per 100,000. For each model, the
data are applied to the three smoking scenarios (Actual Tobacco Control (ATC), No
Tobacco Control (NTC) and Complete Tobacco Control (CTC)) to get lung cancer
deaths and death rates by age and year.

CALIBRATION METHODS

To control for population size, results from the TSCE models were converted to rates
and calibrated against the lung cancer death rates rather than total lung cancer deaths.
These models were estimated using data aggregated over the 30 to 84 age group for
each of the years from 1975 to 2000. We consider general trends for the population as a
whole after netting out smoking factors, as incorporated in the TSCE models.
Specifically, for each model, we regressed the historical lung cancer rates (HLCR)
against the predicted lung cancer rates (PLCR) alone, PLCR interacted with time
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trends, and separate time trend factors:

HLCRt = b0+ b1*PLCRt+ b2 TTt*PLCRt+ b3 TTt2 *PLCRt+ a1TTt+ a2 TTt2+ e t,

where TT denotes a time trend (TT= 1 in 1975, TT = 2 in 1976, …, TT = 26 in 2000),
subscript t = year (t= 1975, …, t = 2000), and e is the error term. The first part of the
equation shows the influence of smoking as predicted by the TSCE model (b1) with
any constant deviation (b0), while the next two terms correct the predictions of the
smoking model for linear (b2) and non-linear (b3) biases over time. The second part of
the equation allows for linear (a1) and non-linear (a2) trends not captured by the
smoking model. We also estimated log specifications of the above model, which imply
a proportional rather than constant deviation of model predictions from the historical
rates, and a multiplicative rather than linear relationship between the variables.
Because reliable data were not available for cohorts born before 1900, values in the SBC
data were inferred for smoking rate variables for the older missing ages in the years
1975 to 1985. To check for bias in the method used to calculate these values, we
included a correction factor in the estimation equation equal to the number of age
years with missing variables: 10 = 1975, 9= 1976,…, 1= 1984, 0 = 1985 and above. The
correction factor was generally insignificant and induced autocorrelation.
Consequently, it was dropped from the model.
Our goal was to determine the most parsimonious model with the highest level of
predictability and with predictions that were not systematically biased over time.
Predictability was gauged by the adjusted R-square. Systematically biased predictions
were gauged by autocorrelation in the error terms. The Durbin-Watson (D-W) statistic
was used to test for first order correlation of the error terms et and et-1. We began with
a simple model that regressed HLCR on PLCR and a constant term. We then added
variables to the equation, and kept those variables in the equation if the coefficient of
the variable had a t-statistic

LUNG CANCER DEATHS UNDER THE NO, ACTUAL AND
COMPLETE TOBACCO CONTROL SCENARIOS
For each of the 4 models (male and female TSCE CPS-I and TSCE CPS-II) we compared
the un-calibrated and calibrated predicted lung cancer death rates under the NTC,
ATC and CTC scenarios. To calibrate the counterfactual NTC and CTC predictions we
applied the best-fitting calibration equations from the ATC model (for the
corresponding gender and CPS model) to the predicted lung cancer rates for NTC and
CTC. We also calibrated by multiplying the NTC and CTC predicted rates by a
correction factor, measured as the ratio of the historical to the corresponding (gender,
year and CPS-type data set) ATC rates. Corrections were separately applied to each
estimate of lung cancer deaths in two ways: using a measure 1) aggregated over all
ages by year and 2) distinguished by each age and year.

REFERENCES:
1 DOLL, R., PETO, R., WHEATLEY, K., GRAY, R., SUTHERLAND, I. “Mortality in

relation to smoking: 40 years' observations on male British doctors” in Bmj
1994; 309: 901-11

2 FLANDERS, W. D., LALLY, C. A., ZHU, B. P., HENLEY, S. J., THUN, M. J. “Lung
cancer mortality in relation to age, duration of smoking, and daily cigarette
consumption: results from Cancer Prevention Study II” in Cancer Res 2003; 63:
6556-62
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carcinogenesis and lung cancer mortality in three cohorts” in Epidemiol
Biomarkers Prev 2005; 14: 1171-81

7 DOLL, R., PETO, R. “Cigarette smoking and bronchial carcinoma: dose and time
relationships among regular smokers and lifelong non-smokers” in J Epidemiol
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SMOKING HISTORY GENERATOR
COMPONENT

SUMMARY
The smoking history generator (SHG) is a shared precursor micro-simulation model
that produces cohort-specific smoking histories and deaths due to causes other than
lung cancer as inputs for the dose-response models used by members of the CISNET
lung cancer consortium.

OVERVIEW
The core SHG software was parameterized using three tobacco control scenarios to
produce the requisite input data for the models. The first, called the actual tobacco
control (ATC) scenario, is a quantitative description of actual smoking behaviors of
males and females born in the United States between 1890 and 1984. The second, called
no tobacco control (NTC), is a quantitative description of predicted smoking behaviors
of males and females in the United States under the assumption that tobacco control
efforts starting mid-century had never been implemented. The third, called complete
tobacco control (CTC), is a quantitative description of predicted smoking behaviors of
males and females in the United States under the assumption that tobacco control
activities yielded perfect compliance, with all cigarette smoking coming to an end in
the mid-sixties. The ATC scenario used inputs derived directly from observed data in
the National Health Interview Surveys (NHIS) and the Substance Abuse and Mental
Health Services Administration (SAMHSA) National Survey on Drug Use and Health.
The NTC scenario used inputs derived by extrapolating from trends in the observed
histories before 1954, i.e., before any tobacco control in the decade leading up to the
publication of the Surgeon General's Report in 1964. The CTC scenario was simulated
by setting cessation rates to one (i.e., transferring all current smokers to former
smokers) and allowing no further initiation starting in 1965 while using the observed
values in earlier years.

DETAIL
The SHG accepts parameters supportive of the three tobacco control scenarios
described above (see Table SGH-I below). The ATC scenario uses initiation, cessation
and smoking intensity (CPD) rates directly derived from the NHIS and SAMHSA
datasets. The NTC scenario uses initiation and cessation rates derived by fitting an age-
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period-cohort model to the ATC rates upto 1954, i.e., before the apperance of any
tobacco control measures, and by projecting those into the future maintaining them
consistent with the patterns observed in 1954. The CTC scenario uses initiation and
cessation rates identical to those of the ATC scenario upto 1965, and then sets the
cessation rates equal to one and the initiation rates equal to zero, i.e., all smokers are
forced to quit in 1965, and no new smokers are allowed to appear thereafter. All
scenarios use smoking dependent other cause mortality (OCD) rates derived from
several sources as mentioned above.

Computational process in the usage of the SHG

The CISNET SHG is implemented in C++ and consists of a single simulation class, that
receives file system paths to five parameter files, four integer pseudorandom number
generator (PRNG) seeds, and an optional immediate smoking cessation year
parameter. The SHG simulation class employs four independent random selection
processes that are implemented via a class-based wrapper of the Mersenne Twister

PRNG.1

Here we briefly describe the outline for computational process in the usage of the SHG:

1. Initialization

a. Load input data

b. Initialize random number streams

3. Start Simulation

a. Validate inputs

b. Determine Initiation Age (if any)

c. Determine Cessation Age (if any)

d. Compute cigarettes smoked per day (CPD) vector for those who initiate

1. Determine smoking intensity group (based on initiation age)

2. Determine CPD based on smoking intensity and age at initiation

3. Determine uptake period and attenuate CPD during uptake period

4. Generate CPD vector from initiation to cessation or simulation cutoff

e. Compute other cause of death (OCD) age

5. Write individual outputs

6. Loop simulation if repeats are specified
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RELEVANT PARAMETERS
The SHG utilizes input data from several sources: the NHIS data from 1965 to 2001, the
SAMHSA data, the Berkeley mortality database cohort life-tables, the National Center
for Health Statistics (NCHS), the Cancer Prevention Study I and II (CPS-I and CPS-II),
and the Nutrition follow-up studies sponsored by the American Cancer Society. The
NHIS and the SAMHSA datasets provide estimates for prevalence of never, former (by
years quit) and current smokers by age and year, and data on smoking intensity (in
terms of the average number of cigarettes smoked per day (CPD)). These data were
used to create implicit initiation and cessation rates. Using the average initiation rate,
the SHG is able to determine the likelihood that a never smoker becomes a smoker. For
those individuals that are smokers, the cessation rates are used to determine the
likelihood that a smoker becomes an ex-smoker. The Berkeley life-tables, combined
with smoking prevalence estimates from NHIS and the relative risks of death for
smokers and former smokers in comparison to never smokers from CPS-I and CPS-II,
are used to produce the probability of death from causes other than lung cancer based
on age, sex, birth cohort, and smoking status. Table SHG-I summarizes the input
source for the SHG for the three CISNET tobacco control scenarios.

Table SHG-I

Inpupt ATC NTC CTC

Initiation rates NHIS Derived Derived

(no new smokers after 1965)

Cessation rates NHIS Derived Derived

(all smokers quit in 1965)

CPD1 NHIS,SMAHSA

OCD2 Berkely life-tables, NCHS, NHIS, CPS-I, CPS-III, Nutrition Follow-up studies

Birth year

(1890-1984)

User Defined

Gender

(Male/Female)

User Defined

Race

(All race)

User Defined

1 Cigarettes smoked per day,2Other Cause of Death

ATC: actual tobacco control, NTC: no tobacco control, CTC: complete tobacco control.
To simulate life histories for individuals using the SHG, for any given run, the
following parameters must be provided:
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Table SHG-II

Parameter Valid Values

Seed value for PRNG used for Initiation, Cessation, OCD1, Smoking

intensity quintile

Integer from -1 to 2147483647

(A value of -1 uses the clock time as the

seed)

Race 0 = All Races

Sex 0=Male, 1=Female

Year of Birth Integer from 1890 to 1984

Immediate Cessation year2 0 or Integer from 1910 to 2000

Repeat3 Integer >1 (number of times to repeat

simulation)

File paths to Initiation,Cessation, OCD,

Smoking intensity quintile and CPD4 data files

As derived from NHIS depending on the

scenario

1Other cause of death, 2 This variable is set to 0 except for CTC scenario. To apply immediate smoking

cessation for CTC scenario, the year for immediate cessation must be supplied to the simulator. If the year

value supplied is 0, immediate cessation will not be used in the run. If a year value is supplied, immediate

cessation will occur on January 1st of year provided. 3Key is optional and can be excluded. If the Repeat value

is included and is not a vector value, each set of parameters will be repeated by the amount specified. If the

Repeat value is included and is a vector value, the repeat value will pertain to the value set that it corresponds

to. 4Cigarettes smoked per day.

DEPENDENT OUTPUTS
The inputs of the SHG are used to simulate life histories (up to age 84) for individuals
born in the United States between 1890 and 1984. These life histories include a birth
year, and age at death from causes other than lung cancer, conditioned on smoking
histories. For each simulated individual, the generated life histories include whether
the individual was a smoker or not and, if a smoker, the age at smoking initiation, the
smoking intensity in cigarettes per day (CPD) by age, and the age of smoking
cessation. Smoking relapse, the probability that a former smoker starts smoking again,
is not modeled. Table SHG-III summarizes the output of the SHG. Fig. SHG-1 shows
two examples of smoking histories simulated by the SHG; a) an individual born in 1910
who begins smoking at age 17, quits at age 56 and dies at age 67 due to causes other
than lung cancer, and b) an individual born in 1920 who begins smoking at age 22 and
dies at age 53 due to causes other than lung cancer.

Table SHG-III

Table SHG-III

Initiation Age Age at smoking initiation

Cessation Age Age at smoking cessation

OCD1 Age Age at death from cause other than lung cancer

Smoking

History

Smoking intensity quintile (5 quintiles ranging from light to heavy smoking), Yearly smoking dose

(CPD2)

1Other cause of death, 2Cigarettes smoked per day.
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Figure SHG-1: Examples of the SHG-Generated Events

Simulation results by the SHG can be formatted in four different ways:

1. Text (formatted, human readable text depicting smoking history);

2. Tab Delimited Data (plain text, suitable for post-processing);

3. Annotated text-based timeline (visual representation in text);

4. XML (plain text, suitable for parsing). The outputs from the SHG are made up of
individual life histories, each of which includes the following variables: birth
year, age of smoking initiation, the corresponding smoking intensity (CPD) by
age, age of smoking cessation, and age at death from causes other than lung
cancer, conditioned on smoking histories.

REFERENCES:
1 Matsumoto M., Nishimura T. “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator.” 1998; 8: 1: 3-30
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OUTPUT OVERVIEW

OVERVIEW
Three sets of equations are used to develop the final predictions of lung cancer deaths,
and each are an important part of the output. They are done sequentially.

The first set relates smoking characteristics to lung cancer death rates using the
smoking models describeded in the Component Overview Section. Calculations of
lung cancer rates are computed by age, year and gender. We calculate the predicted
lung cancer rates separately for each of the smoking models (Knoke based on CPS-I,
TSCE-CPS-I, TSCE-CPS-II, and Flanders-CPS-II). For a particular year, we sum the
predicted lung cancer rates over ages 30-84 for a particular gender using each of the
models. Thereby, for each smoking model, we obtain a predicted lung cancer death
rate over ages 30-84 for each year and by gender.

The second set of outputs is from equations that relate the predictions from the
smoking models to historical lung cancer death rates. For a particular gender and
smoking model, we regress the predicted lung cancer rate (aggregated over ages) from
the the smoking model on historical lung cancer rates, using the functional forms for
the regression equations described in the components section. These results are used to
calibrate the models and to distinguish smoking and non-smoking related factors using
methods described in the Component Overview Section. They are conducted at two
levels of aggregation: combined ages 30-84 by gender and year and by individual age
by gender and year.

The third set of results is the development of the counterfactual cases for no tobacco
control and complete tobacco control. We develop uncalibrated and calibrated results,
with calibrations as developed using actual tobacco control predictions from the
second set of results and period and age-period calibrations described in the
Component Overview section. The no tobacco control and complete tobacco control
results are combined with the actual tobacco control results to estimates lives saved as
a result of tobacco control and the potential lives saved with complete tobacco control
as described in the Component Overview Section
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RESULTS OVERVIEW

OVERVIEW
MACRO MODEL AGGREGATE APPROACH
We have confined analysis presented here to the TSCE models, but using two different
data sources: CPS-I and CPS-II. Separate models are developed by gender.

PREDICTIONS OF LUNG CANCER DEATHS RATES FROM THE TSCE SMOKING
MODELS
Figure1 shows male and female predictions of the TSCE models as well as historical
lung cancer death rates.

Figure2a shows male and female breakdowns by age, and similarly Figure2b shows
female rates. Figure3 shows male and female predicted lung cancer rates respectively
for never, current, and former smokers.

Historical male lung cancer death rates for those ages 30 to 84 increase through 1985,
plateau through 1990, and then fall from 1990 onward. Both male models predict rates
that are considerably less than historical rates for all years. The trend predicted by the
CPS-I model is similar to that of historical lung cancer rates, with similar percentage
increases albeit at a lower initial level from 1975 to 1981. The lung cancer rates
predicted by the male CPS-II model begin to decline almost immediately but are
considerably closer to historical rates than the CPS-I model. The CPS-II model mirrors
the trend albeit at a lower initial level from 1989 to 2000.

For the 30 to 49 age group, historical lung cancer death rates followed a continual
downward trend with some flattening beginning in 1990. The rates predicted by both
models showed similar patterns, but with less decline. The rates predicted by the CPS I
model were above those predicted by the CPS-II model, but below historical rates
except for 1995 to 2000. Unlike for those ages 50 and above, rates predicted by the CPS-
I model were greater than the CPS-II model for those below age 50. For males in the 50
to 69 and 70 to 84 age groups, historical rates increased until about 1990 and then
declined, with a steeper decline in the 50 to 69 age group. For males age 50 to 69, both
smoking models predicted rates considerably below historical rates with relatively flat
rates until about 1988, followed by a decline albeit at a slower rate than historical rates.
For males ages 70 to 84, the age range during which most lung cancer deaths occur, the
CPS-I model yielded considerably lower predictions than the CPS-II model and
historical trends, but mirrored changes in historical trends more closely than the CPS-II
model. The CPS-II model predictions begin near historical predictions, but diverge
over time. Generally, the male models under-predict historical rates; the CPS-I models
better mirrored changes in trends, but CPS-II models yielded predictions closer to
those of historical rates and mirrored trends in the 1990 to 2000 period. The projected
trends from both models converged toward historical rates for younger smokers, but
diverged for older smokers.

For females, historical lung cancer death rates increased over the entire period studied,
except for the year 1999, but begin to flatten around 1990. Although the rates predicted
by the CPS-I model show similar trends to the historical rates, the gap widens from
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50% of historical rates in 1975 to 25% of historical rates in 2000. The rates predicted by
the CPS-2 model are close (about 90%) to historical rates in 1975, with the gap
increasing to about 60%. For females age 30 to 49, the CPS-I and CPS-II models were
considerably below historical rates and did not fall as rapidly over time. For females
age 50 to 69, historical rates increased quite rapidly through 1993 and then fell. The
predictions of the two models, especially the CPS-I model, were below and much
flatter than historical rates. For females age 70 to 84, the upward trend exhibited by
both models, especially the CPS-I model, was considerably less than the historical
rates. The CPS-II model, and to a much greater extent the CPS-I model, predicted lung
cancer death rates below historical rates, but both under-predict the change in rates
relative to historical changes. Like for males, the projected trends from both models
converged toward historical rates for younger smokers, but diverged for older
smokers.

By smoking status, the smoking models (3a, 3b, 3c) predict that male lung cancer death
rates vary little over time for never smokers and decrease for smokers. Different
patterns are observed for ex-smokers from the CPS-I and CPS-II models, increasing
until about 1990 and then decrease for former smokers using CPS II and continuously
increasing using CPS I. The CPS-II model predicts higher death rates than the CPS-I
model, except for never smokers. For females, the CPS-I and the CPS-II models predict
a slow continuous decline for never smokers, a rise until 1988 followed by a decline for
smokers, and a rapid rise until 1995 and then a tapering off for former smokers.

CALIBRATION OF PREDICTIONS OF THE ATC MODEL TO HISTORICAL LUNG
CANCER DEATH RATES
Table1a, Table1b, Table2a, and Table2b show the results from our calibration equations
for males and females respectively. The requirement of no serial correlation was
rejected for models with only the non-interacted predicted values from the smoking
models. For both the log and linear models, the predictability improved and serial
correlation was reduced to acceptable levels when PLCR variables were interacted
with time trends.

For the both the CPS-I and CPS-II male linear models, the models failed to reject serial
correlated errors except when both the and variables were
included in the estimation equation. In addition, the adjusted R-square was marginally
higher when the non-interacted PLCR variable was dropped and the D-W statistic and
adjusted R-square improved when a non-interacted time trend variable was added for
both models. The CPS-I and CPS-II linear models with the
and variables (eqn. 6) have strong explanatory power (as indicated by R-square
values that exceed 0.99), exhibit no significant autocorrelation (i.e. the D-W statistic is
within the 1.7-2.3 range), and all variable coefficients are statistically significant. For
the log models, the equations with a non-interacted and (eqn. 10
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for CPS-I and CPS-II) performed best in terms of non-serially correlated errors and the
adjusted R-square (above 0.99). When a non-interacted time trend was added, its
coefficient was significant and serial correlation was reduced (eqn. 11).

Similar to the male models, the variables and were
required in the linear models for females to reduce autocorrelation to insignificant
levels. For the CPS-I model, the equations with and (eqn. 4)
or with and and (eqn. 6) performed best in terms of the
D-W statistic and the adjusted R-square. For the CPS-II linear model, the adjusted R-
squares were higher when the non-interacted PLCR variable was dropped (eqns. 4 and
6), and the D-W statistic improved when a non-interacted TT variable was added (eqn.
6). In log form, the CPS-I models with either the variables and

or with the variables and and performed best.
The log model with and induced severe multicollinearity. The
CPS-II female models in log form performed about equally well in terms of serial
correlation and the adjusted R-square when either the variables
and (eqn. 11) or and (eqn. 12) were included. These
models, along equations 4 and 6, had adjusted R-square values above 0.99 and no
detectable serial correlation of the error terms.

DISAGGREGATED APPROACH BY AGE

To be done
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SMOKING BASE CASE
A consortium of investigators developed independent mathematical models to
measure the impact of declines in smoking initiation and the rise in smoking cessation
on lung cancer mortality. Using common inputs, they estimated the number of lung
cancer deaths avoided over the period 1975-2000, and also the number of deaths that
could have been averted had tobacco control been completely effective in eliminating
smoking in 1965, shortly after the issuance of the Surgeon General's report in 1964.
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PREDICTION AND CALIBRATION
EQUATIONS

OVERVIEW
A second set of equations relate the predictions from the smoking models to historical
lung cancer death rates Base Case data were provided on historical U.S. lung cancer
deaths by age, gender and year for the years 1975 to 2000. Lung cancer deaths per
100,000 by age and year were calculated by dividing the total number of lung cancer
deaths by population and multiplying by 100,000.

We seek to develop parsimonious models that capture age-related smoking and non-
smoking trends in lung cancer deaths. Using lung cancer deaths rates estimated for
each of the seven models under actual tobacco, each model’s predictions under the TC
scenario are separately calibrated against historical levels of lung cancer death rates.

The age, period and cohort-related changes are implicitly assumed to be captured by
the smoking models. Because the smoking models were estimated using either CPS-1
or CPS-II data, which provide different relative risks and neither of which are
representative of the U.S. population, their predictions of levels and trends in lung
cancer rates may be biased for the population at large. In addition, the models applied
from the literature differ. To correct for these potential biases, we apply correction
factors to the predicted rates from the smoking models. We assume that age and
cohort-related changes are captured by the smoking models described above. In
addition, we simultaneously consider trends not related to the smoking model
predictions to control for omitted non-smoking factors.

To control for the size of population, the models are calibrated against the lung cancer
death rates, rather than total lung cancer deaths. The models are estimated using data
for each of the years 1975-2000 for 1) all age groups aggregated (i.e., using lung cancer
death rates for all 30-84 year olds), 2) by five year age group, and 3) stacked by age and
year.

DETAIL
Models Aggregated over all Ages

In the models aggregated over all age groups, age and cohort-related changes are
implicitly assumed to be captured by the smoking models described in the last section
in an attempt to isolate the role of age- and smoking-related factors and unaccounted
for trends in the effect of smoking. We also consider other trends, i.e., residual trends
not captured by the smoking models.

We regress the historical lung cancer rate (HLCR) on the lung cancer rate predicted by
a particular model (PLCR) alone and interacted with trends, as well as with separate
trend factors. Specifically, our complete estimation equation for each of the seven
models is the following:
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where TT denotes a time trend (TT= 1 in 1975, TT = 2 in 1976, …TT = 26 in 2000),
subscript t = year (t= 1975, …, t = 2000), and e is the error term. The first part of the
equation examines the role of smoking as predicted by a particular model
correcting the predictions of the smoking model for linear and non-linear trends
and the second part allows for differences in linear and non-linear trends not
captured by the smoking model.

Equations are estimated for each of the seven models. Our goal is to develop the
simplest “unbiased” model with the highest adjusted R-square. Serial correlation of the
error terms, and is an indication of bias in the model from omitted factors, and
will lead to biased predictions. To test for serial correlation, we use the Durbin Watson
statistic. To gain model simplicity, we drop terms if the coefficient of a variable has a t
We also considered log specifications of the above models to determine if that
functional form provides a better fit. These models did not improve the fit and are not
reported. In addition, to consider bias from values inferred for the missing smoking
rate variables for ages 75-84 in the years 1975-1985, we created a correction factor,
equal to the number of age years with missing variables: 10 = 1975, 9= 1976,…, 1= 1984,
0 = 1985 and above), and included that variable in the estimation equation to detect
potential measurement error. This variable was generally insignificant and induced
serial correlation, and was thus dropped from the model.

As a test of whether the smoking models provide predictability beyond simple trends,
we compare each of the models to a quadratic trend model. The time trend model is of
the form

A statistical test proposed by Harvey et al.1 is used to test the full model against the
trend model. We also consider serial correlation as well as improved fit.

Once estimates are developed for each of the seven models, we compare the different
models for each gender separately, also distinguishing models that used CPS-I against
those using CPS-II data to generate their original models. The models are compared in
terms of the parsimony of the fitted calibration equation (i.e., the ability of predictions
of the smoking model alone to capture trends), the adjusted R-square, and serial
correlation.

Equations by Age and Year
In this analysis, a single equation is estimated as in our aggregated model, except that
there are separate observations by age group stacked by year. The estimation equation
is:

where TT denotes a time trend (TT= 1 in 1975, TT = 2 in 1976, …TT = 25 in 2000),
subscript a is the 5 year age group (a = 1 for ages 30-34, a = 2 for ages 35-39,…, a = 11 for
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ages 80-84). subscript t = year (t= 1 in 1975, t = 2 in 1976, …t = 25 in 2000), and e is the
error term. The above model is a fixed effects model for age a_{0,a}. We estimate
random components models where the fixed effect is a special case.
In this case, we explicitly allow for differences in age effects, along with time trends.
While cohort effects are assumed to be captured by the smoking models, we also
directly test for cohort effects in the 5 year age group models by examining the
correlation between e_{t,a} and e_{t-5,a-5}, where observations for ages 30-34 are
dropped. While the coefficients are by age, the results are examined for similar patterns
in the estimated coefficients for contiguous age groups.
Lung Cancer Deaths under the No, Actual and Complete Tobacco Control Scenarios
Under the TC, NTC and CTC scenarios, we summed the values under each model over
age groups to obtain the total lung cancer deaths for ages 30 through 84 under the
respective scenario. For each or the seven models, (TSCE CPS-I, TSCE CPS-II and
Flanders both male and female and Knoke Male), we compare the predicted lung
cancer deaths and death rates under the three scenarios. The difference between lung
cancer deaths between the actual and no tobacco control scenario is the lives saved as a
result of actual tobacco control. The difference between actual and complete tobacco
control is the lives that could be saved if smoking were eliminated in 1965. Summing
over genders yields total lives saved. Using population data to estimates rates, we also
comparing lung cancer death rates under each scenario.

We conduct the analysis for both the un-calibrated and for the best fitting,
parsimonious calibrated models. To calibrate the counterfactual NTC and CTC
predictions we applied the best-fitting calibration equations from the ATC model (for
the corresponding gender and CPS model) to the predicted lung cancer rates for NTC
and CTC, under the assumption that the lung cancer risks would otherwise be
influenced by the same smoking and non-smoking trends. We also calibrated by
multiplying the NTC and CTC predicted rates by a correction factor, measured as the
ratio of the historical to the corresponding (gender, year and CPS-type data set) ATC
rates. Corrections were separately applied to each estimate of lung cancer deaths in
two ways: using a measure 1) aggregated over all ages by year and 2) distinguished by
each age and year.

REFERENCES:
1 HARVEY, D., LEYBOURNE, S., NEWBOLD, P. “Tests for Forecast Encompassing” in

Journal of Business and Economic Statistics, American Statistical Association
1998; 16: 254-69

PIRE
Prediction And Calibration Equations

References:

Page 134 of 288 All material © Copyright 2003-2011 CISNET



FIGURE1

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

PIRE
Figure1

Page 135 of 288 All material © Copyright 2003-2011 CISNET



FIGURE2A

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

PIRE
Figure2a

Page 136 of 288 All material © Copyright 2003-2011 CISNET



FIGURE2B

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

PIRE
Figure2b

Page 137 of 288 All material © Copyright 2003-2011 CISNET



FIGURE3

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

PIRE
Figure3

Page 138 of 288 All material © Copyright 2003-2011 CISNET



TABLE1A
Model Constant Linear

time
trend

Quadratic
time
trend

Predicted
rate per

100K pop

predictT predictTT R
Square

Adjusted
R square

Std.
Error of

the
Estimate

Durbin-
Watson

CPS-I: Linear Form
1 29.5 1.28 0.830 0.822 4.095 0.13

t-stat 3.1 10.81 **

sig 0.0

2 -68.5 2.31 0.016 0.952 0.948 2.218 0.43

t-stat -5.0 15.49 7.67 **

sig

3 121.1 0.07 0.032 -0.0016 0.992 0.991 0.902 1.70

t-stat 6.6 0.34 18.6 -10.8

sig 0.74

4 127.3 0.032 -0.0017 0.992 0.992 0.885 1.70

t-stat 221.1 27.5 -40.4

sig

5 131.3 -7.42 0.098 0.989 0.988 1.060 1.51

t-stat 215.1 -33.6 29.5 *

sig

6 128.3 -1.93 0.049 -0.0012 0.993 0.992 0.876 1.89

t-stat 127.3 -1.19 3.40 -3.41

sig 0.25 0.003 0.0030

7 107.8 -2.83 0.25 0.056 -0.0009 0.993 0.992 0.875 1.98

t-stat 5.4 -1.54 0.24 0.016 0.0010

sig 0.14 0.31 0.002 0.10

Natural Log Form
8 1.41 0.79 0.844 0.837 0.03114 0.14

t-stat 4.63 11.38 **

sig

9 -1.96 1.53 0.0022 0.949 0.945 0.018 0.41

t-stat -3.80 13.47 6.96 **

sig

10 4.85 0.0043 -0.00023 0.992 0.991 0.0070 1.78

t-stat 1086.2 25.1 -36.69

sig

11 3.36 -0.20 0.34 0.047 0.992 0.991 0.0072 1.92

t-stat 6.42 -11.04 2.90 11.6

sig 0.01

12 3.66 -0.00076 0.27 0.0038 0.993 0.992 0.0067 1.98

t-stat 7.25 -12.02 2.37 21.45

sig 0.03
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TABLE1B
Model Constant Linear

time
trend

Quadratic
time
trend

Predicted
rate per

100K pop

predictT predictTT R
Square

Adjusted
R square

Std.
Error of

the
Estimate

Durbin-
Watson

CPS-II: Linear Form
1 65.84 0.62 0.741 0.730 5.051 0.11

t-stat 8.29 8.28 **

sig

2 -46.98 1.44 0.019 0.947 0.943 2.326 0.41

t-stat -3.78 15.43 9.49 **

sig

3 146.95 -0.17 0.026 -0.0010 0.991 0.991 0.929 1.60

t-stat 8.06 -1.12 25.80 -11.05 **

sig 0.27

4 126.5 0.025 -0.0010 0.991 0.991 0.934 1.50

t-stat 203.1 27.16 -39.95 *

sig

5 130.1 -5.53 0.057 0.992 0.991 0.920 1.84

t-stat 234.7 -40.6 34.04

sig

6 128.3 -2.90 0.042 -0.00062 0.993 0.992 0.863 1.96

t-stat 128.2 -2.23 5.56 -2.04

sig 0.04 0.05

7 127.7 -2.93 0.0054 0.042 -0.00061 0.993 0.992 0.883 1.96

t-stat 6.30 -1.83 0.03 4.66 -1.30

sig 0.08 0.98 0.21

Natural Log Form
8 2.48 0.51 0.774 0.765 0.03743 0.12

t-stat 9.43 9.07 **

sig

9 -1.80 1.39 0.0036 0.945 0.939 0.019 0.39

t-stat -3.42 12.88 8.42 **

sig 0.0023

10 4.85 0.0041 -0.00021 0.993 0.992 0.0069 1.82

t-stat 1093.4 25.7 -37.5

sig

11 3.80 -0.17 0.22 0.04 0.993 0.991 0.0070 2.030

t-stat 7.63 -12.2 2.14 13.45

sig 0.04

12 3.77 -0.0008 0.225 0.0038 0.993 0.992 0.0067 1.98

t-stat 7.87 -12.6 2.26 24.9

sig 0.033855
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TABLE2A
Model (constant) Linear

time
trend

Quadratic
time
trend

Predicted
rate per

100K pop

predictT predictTT R
Square

Adjusted
R square

Std.
Error of

the
Estimate

Durbin-
Watson

CPS-I: Linear Form
1 -127.6 9.69 0.936 0.934 3.31 0.12

t-stat -12.9 18.77 **

sig

2 -54.7 5.32 0.04 0.994 0.993 10.6 0.60

t-stat -9.3 15.56 14.61 **

sig

3 105.7 -4.79 0.27 -0.01 0.998 0.998 0.573 2.05

t-stat 4.9 -3.51 8.79 -7.49

sig 0.00

4 29.6 0.16 -0.003 0.997 0.997 0.700 1.23

t-stat 72.0 44.84 -24.07 **

sig

5 40.9 -7.04 0.42 0.937 0.932 3.353 0.14

t-stat 16.2 -1.80 2.22 **

sig 0.08 0.04

6 31.3 -2.62 0.29 -0.003 0.998 0.998 0.543 2.19

t-stat 59.8 -4.04 9.31 -29.26

sig 0.001

7 57.1 -1.95 -1.65 0.29 0.00 0.998 0.998 0.548 2.26

t-stat 1.64 -1.74 -0.74 9.14 -3.07

sig 0.12 0.10 0.47 0.01
Natural Log Form

8 -2.37 2.29 0.996 0.996 0.015950 0.68

t-stat -28.4 76.8 **

sig

9 -1.70 2.03 0.0010 0.998 0.997 0.01245 1.11

t-stat -12.12 38.14 5.29 **

sig

10 3.44 0.02 -0.00053 0.999 0.999 0.0000787 2.43

t-stat 626.16 76.35 -46.21

sig

11 -3.00 -0.1113 2.340043057 0.04 0.999 0.999 0.000112537 1.73

t-stat -16.92 -3.11 37.72 3.43

sig

12 1.66 -0.0010 0.644 0.019 0.999 0.999 0.00876 2.39

t-stat 1.70 -4.94 1.83 6.20

sig 0.103 0.081
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TABLE2B
Model (constant) Linear

time
trend

Quadratic
time
trend

Predicted
rate per

100K pop

predictT predictTT R
Square

Adjusted
R square

Std.
Error of

the
Estimate

Durbin-
Watson

CPS-II: Linear Form
1 -57.50 2.91 0.878 0.873 4.576 0.09

t-stat -6.52 13.16 **

sig

2 -7.50 1.31 0.02 0.996 0.995 0.866 0.82

t-stat -2.91 17.40 25.43 **

sig 0.01

3 48.56 -0.60 0.09 -0.0020 0.998 0.998 0.540 2.20

t-stat 5.21 -1.90 8.14 -6.10

sig 0.07

4 30.82 0.07 -0.0014 0.998 0.998 0.570 1.82

t-stat 96.76 53.8 -27.0

sig

5 40.54 -5.28 0.16 0.964 0.961 2.525 0.23

t-stat 30.43 -3.92 5.12 **

sig 0.00

6 31.42 -0.54 0.08 -0.0013 0.998 0.998 0.557 2.04

t-stat 60.44 -1.44 10.91 -21.24

sig 0.16

7 60.34 0.53 -1.03 0.10 -0.0024 0.998 0.998 0.548 2.24

t-stat 2.74 0.59 -1.31 6.99 -2.82 **

sig 0.01 0.56 0.20 0.010

Natural Log Form
8 -3.71 2.11 0.920 0.916 0.0711 0.084

t-stat -7.94 16.57 **

sig

9 -0.73 1.24 0.0041 0.998 0.997 0.0123 1.12

t-stat -5.46 32.5 27.8 **

sig

10 3.44 0.019 -0.00041 0.998 0.998 0.00919 2.21

t-stat 612.0 73.4 -43.8

sig

11 -0.52 -0.07 1.18 0.02 0.998 0.998 0.0104 1.71

t-stat -3.93 -3.22 32.1 3.91

sig 0.00

12 1.91 0.00 0.45 0.01 0.999 0.999 0.00896 2.30

t-stat 3.31 -4.64 2.65 6.65

sig 0.003 0.01
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MGH INSTITUTE FOR TECHNOLOGY
ASSESSMENT
Important note: This document will remain archived as a technical appendix for
publications. New versions will be added periodically as model refinements and
updates are completed. The most current version is available at
http://cisnet.cancer.gov/profiles. Note that unlike most PDF documents, the
CISNET model profiles are not suitable for printing as they are not typically
written or read in sequential fashion.

We recommend you let your interests guide you through this document, using the
navigation tree as a general guide to the content available.

The intent of this document is to provide the interested reader with insight into
ongoing research. Model parameters, structure, and results contained herein
should be considered representative but preliminary in nature.

We encourage interested readers to contact the contributors for further
information.

Go directly to the: Reader's Guide.
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READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

◦ Smoking History Generator Component

◦ Population Component

◦ Incidence Component

◦ Natural History Component

◦ Screening Component

◦ Treatment Component

◦ Survival Mortality Component

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Key References
A list of references used in the development of the model.

Further Reading
These topics will provide a intermediate level view of the model. Consider these
documents if you are interested gaining in a working knowledge of the model, its
inputs and outputs.
Advanced Reading
These topics denote more detailed documentation about specific and important aspects
of the model structure

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

MGHITA
Readers Guide

Page 144 of 288 All material © Copyright 2003-2011 CISNET



MGHITA
Readers Guide

Page 145 of 288 All material © Copyright 2003-2011 CISNET



MODEL PURPOSE

SUMMARY
This document provides a brief overview of two versions of the Lung Cancer Policy
Model (LCPM) as of the time this model profile was archived. The Summary Of
Versions table lists differences between the single cohort and dynamic cohort versions
of the model and provides examples of their uses to date. The Model Overview gives
more detail and links to model components.

PURPOSE
The original single-cohort LCPM was designed to evaluate the effectiveness, costs, and
cost-effectiveness of helical computed tomography (CT) screening for lung cancer in
the U.S. The single-cohort model can also be used to evaluate both future screening
technologies and advances in treatment effectiveness.

The LCPM was designed to reproduce observed lung cancer incidence and survival
rates in a specified cohort, in the absence of screening. A screening component allows
comparison of mortality rates in the same cohorts under multiple scenarios, e.g., no
screening versus screening. Individual-level outputs include the probability of positive
screening tests. A notable limitation of the current model is that individuals are
simulated as receiving care consistent with clinical practice guidelines.

A dynamic-cohort Population LCPM was developed to evaluate U.S. population trends
in incidence and mortality.
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MODEL OVERVIEW

SUMMARY
This document provides an overview of the lung cancer simulation model developed
by researchers at the MGH Institute for Technology Assessment/Harvard Medical
School.

PURPOSE
The Lung Cancer Policy Model (LCPM) was originally designed to evaluate screening
programs in a specified cohort. When we originally joined CISNET (as an Affiliate
group), the LCPM did not simulate populations. The Population LCPM was developed
with CISNET funding and was used to participate in the Smoking Base Case. See
Summary Of Versions for an overview of the differences between the versions.

Designed to evaluate the effectiveness, costs, and cost-effectiveness of helical computed
tomography (CT) screening for lung cancer in the U.S., the LCPM will inform screening
decisions prior to completion of ongoing trials, address limitations of published cost-
effectiveness analyses of lung cancer screening and offer an opportunity to evaluate
both future screening technologies and advances in treatment effectiveness.

BACKGROUND
An effective means of reducing mortality from lung cancer, the leading cause of cancer
death in the U.S., is urgently needed. Unfortunately, even a sharp reduction in current
smoking rates -- an obvious first step -- would not eliminate lung cancer in the near
term: a former smoker’s risk for lung cancer remains elevated for decades after
smoking cessation. To date, no screening program has been demonstrated effective at
reducing lung cancer mortality.

Ongoing trials of helical CT screening will contribute critical information on

effectiveness, but debates over past cancer screening trials (e.g.,1) should remind us
that publication of completed trial results is unlikely to eliminate uncertainty about the
effectiveness of lung cancer screening.

Advances in screening technologies, staging examinations, and therapies are being
made simultaneously, yet conducting controlled trials on all of these aspects at once is
simply not feasible. The comprehensive modeling approach used in the LCPM,
however, permits an evaluation of all three inter-related areas. Specifically, modeling
can be used to: 1) estimate effects of several combined screening, workup, and
treatment strategies; 2) interpret and reconcile the results of different screening trials;
3) evaluate the potential effects of improved adherence to staging and treatment
guidelines; and 4) determine the effect that improvements in staging and treatment
might have on screening effectiveness. Finally, by including costs as well as
effectiveness outcomes, our model will provide information concerning the relative
cost-effectiveness of interventions spanning the spectrum from screening to treatment,
and thereby provide information which is useful to physicians, policy makers,
legislators and the public.
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MODEL DESCRIPTION
The LCPM is a state-transition model, analyzed as Monte Carlo to allow for individual
heterogeneity in risk factors and event rates. Individuals can move through 5 possible
states: general population, follow-up, diagnosis & staging, treatment & survival, and
dead. Please see the Component Overview and links provided for further details.

The model employs a lifetime time horizon and a cycle length of one month to capture
the short survival times of late-stage lung cancers and to allow for a wide variety of
event recurrence frequencies. The model was populated with individuals in an age-,
race-, gender-, and calendar year-specific cohort representative of the U.S. in terms of
smoking history (Population Component).

Inputs include national survey data for assigning smoking histories, type-specific
distributions of doubling times for lung cancers (Natural History Component), rates of
thoracic imaging exams performed for reasons unrelated to lung cancer, and response
rates of treatments.

Outputs include estimation of incident cancers (Incidence Component), stratified by
age, type, and stage, as well as mortality by detected stage and treatment (Survival
Mortality Component). Calibration to observed incidence and stage-specific survival
curves from the NCI SEER tumor registry allowed estimation of parameters governing
unobservable events, such as development of the first cancerous cell and of metastasis.
Some endpoints from CT screening trials and other literature sources describing
clinical experience were used as secondary calibration targets. Validation of the model
was performed by reproducing observed results of a past lung cancer screening trial
and cohort studies. See Calibration Validation Results for a summary of model
calibration and validation.

As with any model, simplifying assumptions were made (Assumption Overview).
Increasing complexity of the model must be balanced against the number of
parameters that can be estimated using available data; calibration and validation can
show that model outputs are consistent with observed data, but do not guarantee that
the model accurately represents the underlying biology. The model currently omits
radon and second-hand smoke exposure, two known risk factors for lung cancer.

CONTRIBUTORS
Pamela M. Mc Mahon, PhD
Chung Yin Kong, PhD
G. Scott Gazelle, MD, MPH, PhD

REFERENCES:
1 Gøtzsche, P. C., Nielsen, M. “Screening for breast cancer with mammography” in

Cochrane Database of Systematic Reviews 2006; 4
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ASSUMPTION OVERVIEW

SUMMARY
This document discusses key assumptions underlying the Lung Cancer Policy Model
(LCPM) and their possible implications. See the linked Component documents for
context and further details.

BACKGROUND
The LCPM is a comprehensive model of lung cancer development, detection,
treatment, and survival. Unlike a stage-shift model, the LCPM's underlying natural
history model does not require estimates of Screening Biases (eg lead-time) as model
inputs. To estimate parameters governing unobservable events (e.g., timing of
metastasis), we calibrated to multiple endpoints in observed data (see Calibration
Details). Using the calibrated model, we can simulate a screening program and
generate estimates of the screening biases as model outputs.

Archived versions of this document will remain as technical appendices for
publications, but newer versions of this document will reflect updates and refinements.
Like the Coronary Heart Disease Policy Model developed by Dr. Milton Weinstein (a

Co-Investigator on the LCPM) and colleagues1,2, the LCPM was designed to be a
model with a long lifespan.

The LCPM does not rely on data from a single trial to inform the parameter estimates
(but rather incorporates trial data as they emerge), so can be used to evaluate screening
in populations not included in ongoing trials, and can address the ‘moving target’
problem of improved test sensitivity (e.g., CT resolution), as well as other late-breaking
topics, such as treatment interventions.

ASSUMPTION LISTING
Population Component Assumptions

• To allow for undetected lung cancers in the cohort, each individual is first
‘regressed’ to age 20 and assumed to be free of lung cancer. Upon entering the
general population state, he can develop one or more lung cancers as he ages and

acquires his (known3,4) smoking exposure. Two procedures insure that the cohort
still reflects the U.S. population upon reaching the cohort age: 1) individuals face
no competing risks of death until reaching the cohort age; and 2) any individual
who dies of lung cancer prior to reaching the cohort age is re-started at age 20 with
the same smoking history. Aggressive cancers that would have been fatal at ages
younger than the cohort age are thus appropriately removed.

• In the single cohort LCPM, all current smokers after 1990 face a 3% annual chance

of quitting, based on estimates of 2.5% to 3.2%.5,6 Cessation rates in the Population
LCPM rely on the Smoking History Generator.
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• Smoking histories in the single cohort LCPM did not incorporate the tendency of
beginning smokers to gradually increase the number of cigarettes smoked per day.
The Smoking History Generator used in the Population LCPM more closely
approximates such smoking behavior influences the apportioning of lung cancer
risk across the population (see Natural History, below) and alters the proportion
of individuals in a cohort eligible for screening.

Natural History Component Assumptions

• The risk of developing a lung cancer is modeled using a tolerance model:
increasing age, smoking exposure, and genetic susceptibility contribute to risks of
developing one of 5 histologic types of lung cancer.

• A person can develop a maximum of 3 cancers in a lifetime, of any of the 5 types.

• The growth rate assigned to each cancer is drawn from a distribution specific to
the histologic type, is assumed to decrease with increasing size, and was allowed
to vary by smoking status during model calibration.

• Disease progression is modeled through monthly probabilities of involvement of
lymph nodes and development of distant metastases. Progression risks are
functions of characteristics of existing cancers (location, volume, doubling time,
and type), nodal status, and random individual variation.

• Incidence of benign lesions varies with age and geographical region but not with
smoking history. Few benign lesions exhibit cancer-like growth.

• The proportion of mixed adenocarcinoma/BAC that is pure BAC
(bronchioloalveolar carcinoma) was estimated via calibration, not taken from the
literature.

Incidence Component Assumptions

• Benign lesions and asymptomatic lung cancers can be detected incidentally during
a thoracic imaging exam performed for an unrelated reason (non-screening). Risks
of incidental imaging are functions of age, gender, and geography. Sensitivity
varies with size and location and was estimated during calibration.

• Symptom detection can occur via symptoms from the largest primary cancer, by
distant metastases, or both.

• Incidence rates reported in SEER reflect a negligible rate of lung cancer screening
in the population.

Follow Up Component and Workup And Staging Component Assumptions

• Lesions suspicious for lung cancer (from symptoms or incidental detection) are
biopsied if over a minimum diameter or followed with serial high-resolution CT
exams (even in the absence of screening).

• Lesions that exhibit no detectable growth after 2 years of follow-up are assumed to
be benign and to require no further surveillance. Reflecting clinical practice, a
proportion of benign lesions are diagnosed as benign on the basis of a high-
resolution CT (a proxy for modeling calcification patterns).
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• Biopsy-confirmed malignancies are clinically staged based on guidelines
recommended by the National Comprehensive Cancer Network (NCCN).

Treatment Component Assumptions

• Treatments are assigned following NCCN guidelines.

• Effectiveness of systemic treatments are based on probabilities of complete or
partial response. See below for relationship of treatment effectiveness to survival.

• Effectiveness of resection depends on the existence of undetected second lung
cancers and/or occult metastases.

Survival Mortality Component Assumptions

• Survival is a function of both underlying disease state and treatment received
(which itself depends on the accuracy of staging). Patients with M1 (stage IV or
ES) cancers are assigned exponential survival, based on observed median survival

rates7. (Observed stage-specific survival rates7 for patients with M0 cancers are
used as calibration targets, not inputs.)

• Once a patient is diagnosed as stage IV, survival is as observed in SEER (by age,
decade, race, gender, and cell type).

REFERENCES:
1 Weinstein, MC, Coxson, PG, Williams, LW, Pass, TM, Stason, WB, Goldman, L

“Forecasting coronary heart disease incidence, mortality, and cost: The
Coronary Heart Disease Policy Model” in American Journal of Public Health
1987; 77: : 1417-1426

2 Hunink, MGM, Goldman, L, Tosteson, ANA, Mittleman, MA, Goldman, PA,
Williams, LW, Tsevat, J, Weinstein, MC “The recent decline in mortality from
coronary heart disease, 1980-1990” in JAMA 1997; 277: 7: 535-542

3 Massey, JT, Moore, TF, Parsons, VL, Tadros, W “Design and Estimation for the
National Health Interview Survey, 1985-94” in Vital Health Statistics, Series 2,
No. 110 1989;

4 U.S. Department of Health and Human Services, National Center for Health
Statistics, “The National Health and Nutrition Examination Survey III Data file
1988-1994.” in Public Use Data file Series 11 1997;

5 Centers for Disease Control “Smoking Cessation During Previous Year Among
Adults -- United States, 1990 and 1991” in Morbidity and Mortality Weekly
Report 1993; 42: 26: 504-507

6 The Commit Research Group “Community Intervention Trial for Smoking Cessation
(COMMIT): II. Changes in Adult Cigarette Smoking Prevalence” in Am J Public
Health 1995; 85: : 193-200

7 Surveillance Research Program, National Cancer Institute, “Surveillance,
Epidemiology, and End Results (SEER) Program Seer*Stat Database: Incidence -
SEER 13 Regs Public-Use, Nov 2004 Sub (1973-2002 varying)” in Seer*Stat
software version 6.1.4 2005;
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PARAMETER OVERVIEW

SUMMARY
This document provides an overview of the major classes of parameters in the LCPM,
and provides links to parameter documents.

BACKGROUND
Most natural history parameters were estimated by calibration. The NCI's SEER
registry was the primary data source for calibration targets. In the absence of screening,
the model should accurately predict observed tumor registry (SEER) incidence by year,
age, sex, and race. Characteristics of incident cancers predicted by the model should
also correspond to observed distributions of cell types, stages, and sizes, and stage-
specific survival rates for M0 cancers should be accurately predicted. Additional
calibration targets were defined from the literature (see Calibration Details and Output
Overview).

PARAMETER LISTING OVERVIEW

1. Unobservable parameters define unobservable events: development of lung
cancer, disease progression, and symptom detection. Note that the actual values
of many of these parameters are not meaningful outside the context of the
LCPM (although their relative magnitudes may reveal insights into biology). Of
more interest are outputs of the model, such as estimates of Screening Biases.

See Parameters Natural History and Natural History Component for details.

2. Uncertain parameters were those for which literature estimates provided ranges
of values. Categories of uncertain parameters included test characteristics,
operative mortality rates for interventions, response rates for systemic therapies,
and probabilities of clinical events such as wedge biopsy of a growing
pulmonary lesion.

See Parameters Test Performance and Parameters Treatment for details.

3. Structural parameters were fixed during calibration, but included for future
analyses. These included a parameter to allow simulation of African-American
cohorts. Additional structural parameters are described in their relevant model
components.

The Assumption Overview describes major assumptions underlying the LCPM.

4. Other parameters include estimates of costs and weights for adjustments in
quality of life due to lung cancer diagnosis and treatment (to allow estimation of
cost-effectiveness ratios; see Results Overview).
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COMPONENT OVERVIEW

SUMMARY
This document describes typical sequences of component processes for a hypothetical
individual simulated by the LCPM.

OVERVIEW
Persons start the model in the general population state.
See schematic.Readers Guide
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Each month, persons in the general population state face competing risks of death from

causes other than lung cancer.1 While in the general population state, benign
pulmonary nodules and lung cancers can develop, and lung cancers can grow,
progress to nodal involvement and/or distant metastases, or cause symptoms.
Additionally, persons face risks of undergoing non-screening thoracic imaging exams
for reasons unrelated to lung cancer (e.g., for trauma). In a screening scenario, persons
can undergo screening if they are eligible for the specific program and adherent to the
screening protocol.

Persons with small incidentally detected lesions undergo sequential imaging exams in
the follow up state.

Larger incidentally detected lesions, lesions exhibiting growth on serial imaging
exams, and symptomatic cancers are sent for work up and staging.

Once the diagnosis of lung cancer is made, the cancer is staged, and the person moves
to the treatment and survival state.

In the next section, we provide available links to component processes for each of the
states indicated above.

COMPONENT LISTING
General population
The Natural History Component is included, as well as the Screening Component and
the Incidental Imaging Component.

Follow-Up
In the Follow Up Component, incidentally-detected nodules smaller than the cutoff
threshold are managed expectantly with periodic high-resolution CT exams. While a
patient is being followed up, he also cycles through the Natural History Component.

Work-up and Staging
In a single cycle (one month), workup and staging tests are used to establish both the
presence of lung cancer as well as the extent of disease progression. See the Workup
And Staging Component. Patients also cycle through the Natural History Component.

Treatment and Survival
In addition to the Treatment Component and the Survival Mortality Component, the
Natural History Component is also included here. This allows for development of
second lung cancers as well as disease progression of existing primary cancers or occult
metastases.

See the Assumption Overview for key assumptions and links to parameter documents
from the corresponding component documents.

REFERENCES:
1 McMahon, P. M., Zaslavsky, A. M., et al. “Estimation of mortality rates for disease

simulation models using Bayesian evidence synthesis” in Medical Decision
Making 2006; 26: : 497-511
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SMOKING HISTORY GENERATOR
COMPONENT

SUMMARY
The smoking history generator (SHG) is a shared precursor micro-simulation model
that produces cohort-specific smoking histories and deaths due to causes other than
lung cancer as inputs for the dose-response models used by members of the CISNET
lung cancer consortium.

OVERVIEW
The core SHG software was parameterized using three tobacco control scenarios to
produce the requisite input data for the models. The first, called the actual tobacco
control (ATC) scenario, is a quantitative description of actual smoking behaviors of
males and females born in the United States between 1890 and 1984. The second, called
no tobacco control (NTC), is a quantitative description of predicted smoking behaviors
of males and females in the United States under the assumption that tobacco control
efforts starting mid-century had never been implemented. The third, called complete
tobacco control (CTC), is a quantitative description of predicted smoking behaviors of
males and females in the United States under the assumption that tobacco control
activities yielded perfect compliance, with all cigarette smoking coming to an end in
the mid-sixties. The ATC scenario used inputs derived directly from observed data in
the National Health Interview Surveys (NHIS) and the Substance Abuse and Mental
Health Services Administration (SAMHSA) National Survey on Drug Use and Health.
The NTC scenario used inputs derived by extrapolating from trends in the observed
histories before 1954, i.e., before any tobacco control in the decade leading up to the
publication of the Surgeon General's Report in 1964. The CTC scenario was simulated
by setting cessation rates to one (i.e., transferring all current smokers to former
smokers) and allowing no further initiation starting in 1965 while using the observed
values in earlier years.

DETAIL
The SHG accepts parameters supportive of the three tobacco control scenarios
described above (see Table SGH-I below). The ATC scenario uses initiation, cessation
and smoking intensity (CPD) rates directly derived from the NHIS and SAMHSA
datasets. The NTC scenario uses initiation and cessation rates derived by fitting an age-
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period-cohort model to the ATC rates upto 1954, i.e., before the apperance of any
tobacco control measures, and by projecting those into the future maintaining them
consistent with the patterns observed in 1954. The CTC scenario uses initiation and
cessation rates identical to those of the ATC scenario upto 1965, and then sets the
cessation rates equal to one and the initiation rates equal to zero, i.e., all smokers are
forced to quit in 1965, and no new smokers are allowed to appear thereafter. All
scenarios use smoking dependent other cause mortality (OCD) rates derived from
several sources as mentioned above.

Computational process in the usage of the SHG

The CISNET SHG is implemented in C++ and consists of a single simulation class, that
receives file system paths to five parameter files, four integer pseudorandom number
generator (PRNG) seeds, and an optional immediate smoking cessation year
parameter. The SHG simulation class employs four independent random selection
processes that are implemented via a class-based wrapper of the Mersenne Twister

PRNG.1

Here we briefly describe the outline for computational process in the usage of the SHG:

1. Initialization

a. Load input data

b. Initialize random number streams

3. Start Simulation

a. Validate inputs

b. Determine Initiation Age (if any)

c. Determine Cessation Age (if any)

d. Compute cigarettes smoked per day (CPD) vector for those who initiate

1. Determine smoking intensity group (based on initiation age)

2. Determine CPD based on smoking intensity and age at initiation

3. Determine uptake period and attenuate CPD during uptake period

4. Generate CPD vector from initiation to cessation or simulation cutoff

e. Compute other cause of death (OCD) age

5. Write individual outputs

6. Loop simulation if repeats are specified
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RELEVANT PARAMETERS
The SHG utilizes input data from several sources: the NHIS data from 1965 to 2001, the
SAMHSA data, the Berkeley mortality database cohort life-tables, the National Center
for Health Statistics (NCHS), the Cancer Prevention Study I and II (CPS-I and CPS-II),
and the Nutrition follow-up studies sponsored by the American Cancer Society. The
NHIS and the SAMHSA datasets provide estimates for prevalence of never, former (by
years quit) and current smokers by age and year, and data on smoking intensity (in
terms of the average number of cigarettes smoked per day (CPD)). These data were
used to create implicit initiation and cessation rates. Using the average initiation rate,
the SHG is able to determine the likelihood that a never smoker becomes a smoker. For
those individuals that are smokers, the cessation rates are used to determine the
likelihood that a smoker becomes an ex-smoker. The Berkeley life-tables, combined
with smoking prevalence estimates from NHIS and the relative risks of death for
smokers and former smokers in comparison to never smokers from CPS-I and CPS-II,
are used to produce the probability of death from causes other than lung cancer based
on age, sex, birth cohort, and smoking status. Table SHG-I summarizes the input
source for the SHG for the three CISNET tobacco control scenarios.

Table SHG-I

Inpupt ATC NTC CTC

Initiation rates NHIS Derived Derived

(no new smokers after 1965)

Cessation rates NHIS Derived Derived

(all smokers quit in 1965)

CPD1 NHIS,SMAHSA

OCD2 Berkely life-tables, NCHS, NHIS, CPS-I, CPS-III, Nutrition Follow-up studies

Birth year

(1890-1984)

User Defined

Gender

(Male/Female)

User Defined

Race

(All race)

User Defined

1 Cigarettes smoked per day,2Other Cause of Death

ATC: actual tobacco control, NTC: no tobacco control, CTC: complete tobacco control.
To simulate life histories for individuals using the SHG, for any given run, the
following parameters must be provided:
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Table SHG-II

Parameter Valid Values

Seed value for PRNG used for Initiation, Cessation, OCD1, Smoking

intensity quintile

Integer from -1 to 2147483647

(A value of -1 uses the clock time as the

seed)

Race 0 = All Races

Sex 0=Male, 1=Female

Year of Birth Integer from 1890 to 1984

Immediate Cessation year2 0 or Integer from 1910 to 2000

Repeat3 Integer >1 (number of times to repeat

simulation)

File paths to Initiation,Cessation, OCD,

Smoking intensity quintile and CPD4 data files

As derived from NHIS depending on the

scenario

1Other cause of death, 2 This variable is set to 0 except for CTC scenario. To apply immediate smoking

cessation for CTC scenario, the year for immediate cessation must be supplied to the simulator. If the year

value supplied is 0, immediate cessation will not be used in the run. If a year value is supplied, immediate

cessation will occur on January 1st of year provided. 3Key is optional and can be excluded. If the Repeat value

is included and is not a vector value, each set of parameters will be repeated by the amount specified. If the

Repeat value is included and is a vector value, the repeat value will pertain to the value set that it corresponds

to. 4Cigarettes smoked per day.

DEPENDENT OUTPUTS
The inputs of the SHG are used to simulate life histories (up to age 84) for individuals
born in the United States between 1890 and 1984. These life histories include a birth
year, and age at death from causes other than lung cancer, conditioned on smoking
histories. For each simulated individual, the generated life histories include whether
the individual was a smoker or not and, if a smoker, the age at smoking initiation, the
smoking intensity in cigarettes per day (CPD) by age, and the age of smoking
cessation. Smoking relapse, the probability that a former smoker starts smoking again,
is not modeled. Table SHG-III summarizes the output of the SHG. Fig. SHG-1 shows
two examples of smoking histories simulated by the SHG; a) an individual born in 1910
who begins smoking at age 17, quits at age 56 and dies at age 67 due to causes other
than lung cancer, and b) an individual born in 1920 who begins smoking at age 22 and
dies at age 53 due to causes other than lung cancer.

Table SHG-III

Table SHG-III

Initiation Age Age at smoking initiation

Cessation Age Age at smoking cessation

OCD1 Age Age at death from cause other than lung cancer

Smoking

History

Smoking intensity quintile (5 quintiles ranging from light to heavy smoking), Yearly smoking dose

(CPD2)

1Other cause of death, 2Cigarettes smoked per day.
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Figure SHG-1: Examples of the SHG-Generated Events

Simulation results by the SHG can be formatted in four different ways:

1. Text (formatted, human readable text depicting smoking history);

2. Tab Delimited Data (plain text, suitable for post-processing);

3. Annotated text-based timeline (visual representation in text);

4. XML (plain text, suitable for parsing). The outputs from the SHG are made up of
individual life histories, each of which includes the following variables: birth
year, age of smoking initiation, the corresponding smoking intensity (CPD) by
age, age of smoking cessation, and age at death from causes other than lung
cancer, conditioned on smoking histories.

REFERENCES:
1 Matsumoto M., Nishimura T. “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator.” in ACM
Transactions on Modeling and Computer Simulation 1998; 8: 1: 3-30
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POPULATION COMPONENT

SUMMARY
This document describes both the original single cohort LCPM and the Population
LCPM. See Summary Of Versions for an overview of how the versions compare to each
other.

OVERVIEW
The population component defines the initial characteristics of the population entering
the LCPM for a given simulation. This is the first component in the modeling process.
Once each individual in the population is initiated, the individual moves to the general
population state (see Component Overview).

Initial characteristics assigned to each hypothetical person include gender, race,
ethnicity, age, and smoking history. Smoking history includes current status, age at
smoking initiation (if applicable), age at smoking cessation (if applicable), and
cigarettes per day. In the single-cohort LCPM, the cigarettes smoked per day is
assumed constant for cycles in which the individual is a current smoker. In the
Population LCPM, cigarettes per day could vary over time.

Additional characteristics include an indicator for genetic susceptibility to lung cancer
(see Natural History Component).

Simulations begin in a specified calendar year, so that:
1) the proportions of ethnicities and the prevalence of smoking is representative of the
cohort being simulated, and
2) the model-predicted incidence rates can be compared to the corresponding SEER
data (see Incidence Component).

QUANTITATIVE DESCRIPTION
The LCPM is a state transition (Markov) model, analyzed as Monte Carlo (i.e. it
simulates life histories of individuals). The possible states are described in the
Component Overview. The model uses a lifetime time horizon and a cycle length of
one month to capture the short survival times of late-stage lung cancers and to allow
for a wide variety of event recurrence frequencies.

POPULATION DYNAMICS
The original version of the LCPM is a single-cohort model. Individuals enter the model
in specified calendar years, however, and carry appropriate smoking histories
(informed by national survey data).

The Population LCPM simulates multiple birth cohorts to generate annual incidence
and mortality rates.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

MGHITA
Population Component

Page 161 of 288 All material © Copyright 2003-2011 CISNET



RECURRENCE
The LCPM does model recurrence, via either clinical detection of (previously) occult
metastases or by development of a new primary lung cancer. Each individual in the
LCPM can develop up to 3 lung cancers (of any of 5 cell types), and up to 3 benign
lesions. See the Natural History Component and the Survival Mortality Component.

DISEASE DISTRIBUTION
We model the risks of developing each of the 5 cell types of lung cancer
(adenocarcinoma/BAC, large cell, small cell, and squamous, as well as other) as
independent, conditional on risk factors. (In other words, we do not assign a
distribution of lung cancer histologies to the population.)

DETAIL
Approximately 10% of lung cancers occur in life-long non-smokers and SEER data are
not stratified by smoking history. Therefore, the LCPM is populated with entire age,
race and gender cohorts, representative of the U.S. in terms of smoking history.
Smoking history includes current status, age at smoking initiation (if applicable), age at
smoking cessation (if applicable), and cigarettes per day.

An indicator for genetic susceptibility to lung cancer (see Natural History Component)
is assigned randomly.

SINGLE COHORT LCPM
The single-cohort LCPM simulates cohorts of white males and females aged 50, 60 or
70 in 1990. Cohorts entered the model in calendar year 1990 for calibration to SEER
data from 1990 to 2000. Joint distributions of ethnicity and geographic region of the
U.S. were derived from the 1990 Census. Ethnicity (Hispanic/non), region of the
country, and smoking history were assigned to each individual.

Using the 1990 National Health Interview Survey we fit a multinomial logistic model
to estimate the proportion of each smoking status using the predictors age, sex, race,
ethnicity, and region. Data from the third National Health and Nutrition Examination
Survey fielded in 1988-1994, were used to estimate normal distributions of ages of
starting and stopping smoking and the average number of cigarettes smoked per day,
conditional on smoking status, age group, and ethnicity. Cigarettes per day was
assumed constant for cycles in which the individual is a current smoker.

Trial populations can also be simulated - see Screening Component.

POPULATION LCPM
The Population LCPM uses the Smoking History Generator common to all CISNET
lung groups. The Smoking History Generator allows for beginning smokers to 'ramp
up' the number of cigarettes per day and yields a wider range of accumulated pack-
years than the smoking histories used for the single cohort model described above.

RELEVANT ASSUMPTIONS
See the Assumption Overview.
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RELEVANT PARAMETERS
INPUTS
As described above, smoking histories for the single cohort LCPM were derived from
the NHIS and NHANES, large sample surveys that yielded precise estimates of
cigarettes per day and ages of starting and stopping smoking. For the same 6 cohorts in
1990, the Smoking History Generator yields a wider range of pack-years.

IMPACTS OF SMOKING HISTORY INPUTS
Smoking is the strongest risk factor for lung cancer, so even small variations in
smoking histories will influence lung cancer outcomes. To assess the downstream
effects of the observed differences between the smoking histories from the original
single cohort LCPM and those from the Smoking History Generator, we used the
Smoking History Generator to provide ages of starting/stopping smoking and
cigarettes per day and re-calibrated the model, allowing effects of smoke-years,
cigarettes per day, and age to vary from their original estimates. We identified a
parameter set that apportioned the lung cancer risk across smokers differently. See
Parameters Natural History for further details.

RELEVANT COMPONENTS
The Population Component is necessary to specify the characteristics of the cohort
entering the LCPM. Different cohorts will have different lung cancer risks and
therefore outcomes.

DEPENDENT OUTPUTS
All outputs will be affected by the characteristics of the population being simulated.
Heavier smokers, for instance, will have higher rates of lung cancer death and possibly
poorer outcomes from treatment. Characteristics (e.g., doubling times, sizes) of
detected lung cancers will also vary across input populations. See the Output
Overview document.

RELEVANT RESULTS
See the Results Overview for a summary of relevant results from the single cohort
LCPM and Population LCPM.
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INCIDENCE COMPONENT

SUMMARY
To be counted as an incident case, a lung cancer must first develop, then be detected
(by any of several possible modalities) and finally be diagnosed.

This document describes how the LCPM counts incident lung cancers and provides
links to descriptions of components that involve development of cancer, detection, and
diagnosis.

OVERVIEW
In the LCPM, we model the development of lung cancers, followed by tumor growth
and metastasis (see Natural History Component). An individual with undetected lung
cancer remains in the general population state (see Component Overview).

After the last individual in a cohort is simulated, we essentially count up the numbers
of cancers in various categories. We count as incident cancers only cancers that were
diagnosed during the patient's lifetime. Incident cancers are further categorized by
stage, size, type, etc.

Non-screening scenarios:
Lung cancer can be diagnosed symptomatically (either the primary cancer obstructing
an airway or from distant metastases) or asymptomatically (found incidentally during
a thoracic imaging exam performed for unrelated causes - see Relevant Components,
below).

Age-specific incidence rates are calculated and then compared to observed data.

Screening scenarios:
Cancers may also be detected by screening (see Screening Component). The model
tracks the mode of detection of each cancer.

DISEASE RISK
For each of the 5 lung cancer cell types, we estimate a logistic function to predict
monthly risks of developing a cancer. For each cancer type, we estimated independent
coefficients for age, age squared, cigarettes per day, years of smoking, and years since
quitting. There is also a randomly-assigned indicator for increased genetic risk
(equivalent to HR=2). See Natural History Component.

To account for observed birth cohort trends in lung cancer risks and allow for
differences in baseline risk by gender, we added a term that modifies the monthly risk
of lung cancer development (all cell types), stratified by gender. See Calibration
Details.
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IMPACT OF SCREENING
As described above, we do distinguish between incidence in the absence of screening
vs. the presence.
We calibrate to SEER (no screening) and validate with screening trial data (with
screening).

DETAIL
Development of cancer
Further details on the way the LCPM simulates development of cancer is provided in
the Natural History Component.

Detection of cancer
Three modes of detection are possible in the LCPM:

1. Symptoms of previously undiagnosed lung cancers (either the primary cancer or
distant metastases) can prompt detection. See the Symptom Detection
Component.

2. During each cycle spent in the general population, persons may undergo
imaging exams (thoracic CT, or CXR) performed for reasons unrelated to
screening for lung cancer. See the Incidental Imaging Component.

3. Screen detection can occur in eligible individuals, in scenarios which include
screening. See Screening Component.

Diagnosis of cancer
In the LCPM, a diagnosis of lung cancer is required before a person transitions into the
Treatment Component. Diagnosis is operationalized by a biopsy that returns a specific
diagnosis of lung cancer. Biopsies and staging both occur in the one-month Workup
And Staging Component.

RELEVANT ASSUMPTIONS
For the single-cohort LCPM, we used national survey data (NHIS, NHANES) to assign
smoking histories to the individuals in the cohort (see Population Component), and
calibrate to SEER data for incidence.

• If the SEER registries are not representative of the US, calibration to SEER data
may yield biased parameter estimates.

• The smoking histories used for the single-cohort LCPM do not reflect the tendency
of individuals to increase their smoking intake over time (i.e., light smokers
become heavy smokers), which overestimates the pack-years accrued. This could
have resulted in biased estimates of the cumulative dose-response relationship
between smoking and lung cancer risk.

Also see the Assumption Overview.
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RELEVANT PARAMETERS
This component relies most directly on the natural history parameters (see Natural
History Component and the Symptom Detection Component).

However, parameters in other components can influence the incidence rates, such as
patterns of imaging examinations (and their test characteristics) in the general
population (see the Incidental Imaging Component) and whether screening is
occurring (see the Screening Component).

RELEVANT COMPONENTS
The incidence component operates after the last individual in a simulated cohort 'dies.'
It does not contain any other components, per se, but merely functions as a
bookkeeping component.

Components that influence the predicted incidence rates include the Natural History
Component, as well as the Follow-up, Workup And Staging Component and the
Incidental Imaging Component.

DEPENDENT OUTPUTS
Most outputs of interest will depend on the Incidence component, including incidence
rates and therefore mortality rates.

RELEVANT RESULTS
See Calibration Validation Results for a description of outputs from the LCPM after
calibration and validation and links to specific outputs.
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NATURAL HISTORY COMPONENT

SUMMARY
This document describes various aspects of the model processes responsible for
generating the natural history of lung cancer. Benign pulmonary nodules are described
in the Benign Component.

OVERVIEW
The natural history component occurs in every cycle of the model, so that new lung
cancers may develop (and existing lung cancers grow and progress) throughout life.

The Population Component initiates the population entering the LCPM and therefore
precedes the natural history component. The natural history component has sub-
components for lung cancer development, disease (tumor) growth, disease
progression, and symptom detection. All of the sub-components are described below
and/or in linked documents.

Approximately 6% of patients with lung cancer develop more than one primary tumor,
and only half of synchronous multiple primaries are the same type. Therefore, we
model up to three cancers per person, of any of the 4 main types of lung cancer, plus a
5th type to represent Carcinoma, Not Otherwise Specified (ICD-O-2 code 80103). We
modeled pure bronchioloalveolar carcinoma (BAC) as a subset of adenocarcinoma +/-
some BAC, reflecting their differences yet typically mixed histology and

misclassification.3

DISEASE STAGES
A 'true' disease stage is assigned based on the individual's simulated disease
characteristics (tumor size, nodal involvement, distant spread). This true stage is
updated every cycle. See Details, below. An observed disease stage is also assigned,
based on the individual's 'true' disease characteristics and the results from any
diagnostic or staging tests performed. Observed and true stages may not match if a
cancer is undiagnosed or mis-staged by a test result.

DISEASE GROWTH
We assume continuous Gompertz tumor growth, assigning a growth parameter for
each new cancer that is drawn from distributions specific for the 5 cell types of lung
cancer. We also include a term to allow cancers in smokers to exhibit accelerated
growth. See Details, below and Parameters Natural History.

STAGE TRANSITION TRENDS
No temporal trends are imposed on stage transitions.
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DISEASE EVOLUTION
One birth cohort parameter is changed over calendar time:

To account for observed birth cohort trends in lung cancer risks and allow for

differences in baseline risk by gender,6 we added a term that modifies the monthly risk
of lung cancer development (all cell types), stratified by decade of birth and gender.
See Calibration Details.

Remaining natural history parameters are not changed over (calendar) time. (Smoking
histories do change over time, however, so will influence lung cancer trends.)

REGRESSION
The model assumes an irreversible (in the absence of resection) progression of lung
cancer disease stages. The speed of progression varies greatly, however, so that some
cancers would never be detected during life in the absence of screening. The growth of
BACs was truncated at a maximum diameter of 1 cm (detectable by X-ray).

DETAIL
Lung Cancer Development
The LCPM employs a simple ‘tolerance’ model of cancer development (so-called
because cancer may only develop after an individual’s tolerance to risk factors has
been exceeded).

The monthly probability of developing the first malignant cell of cancer type k = 1-5 is
a logistic function with a type-specific intercept and type-specific coefficients for age,
age^2, years of cigarette exposure (smoke-years, SY), average number of cigarettes
smoked per day (cigarettes per day, CPD), and the years since quitting (YSQ) smoking,
if applicable. We also allow for random individual variation (highrisk, a proxy for
genetic susceptibility), constant for all 5 types.

A logistic model produced nearly as high an R^2 goodness-of-fit statistic as a two-stage

model7 (R^2 of 0.61 and 0.67, respectively) in a comparison of 5 models for lung

cancer’s dose-response to tobacco,8 and studies of case control data showed good fit

using a logistic function to predict lung cancer (all types combined).9 The MVK 2-stage

model7 models each initiated cell as growing instantaneously into a malignant tumor

after a fixed period of time,10 an assumption that precludes size-dependent sensitivity
of imaging exams.

Lung Cancer Characteristics and Growth
Indicators are assigned to each new cancer for cell type, size (initial diameter of 0.01
mm), lobe in the lung, and central or peripheral location (varied by type).

In each cycle, the diameter and volume of existing cancers (and any growing benign
lesions) are incremented according to a Gompertz function for tumor growth.
Consistent with biological mechanisms of tumor growth (e.g., angiogenesis and
necrosis of the tumor core), tumor doubling times decrease as the volume asymptotes
to its maximum possible.
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Mean doubling times for large, small, and squamous cell cancers were estimated from
the literature (see Table Growth Parameters) and used to derive distributions of
growth rate parameters. Distributions of growth rate parameters for adenocarcinoma/
BAC and “other” cell types were estimated via calibration.

A modification term (estimated during calibration) allows slower growth rates in non-
smokers.

Lung Cancer Progression
Disease progression of an existing lung cancer can occur via nodal involvement and
distant metastasis. Risks of disease progression depend on characteristics of any
cancers present, and random individual variation that allows for more or less
aggressive cancers, given a cancer’s size and growth rate.

For each individual, 8 threshold volumes are drawn randomly from distributions for
each nodal stage (N1, N2, N3) and for distant spread (M1), stratified by cell type
(NSCLC/SCLC). Threshold volumes are adjusted to allow variation by growth rate. In
each cycle, development of metastases and involvement of lymph nodes (N1, 2, 3)
occurs if and only if the current volume of the largest cancer is greater than the
corresponding adjusted threshold volume.

Symptom Detection
Each month, individuals with distant metastases and/or a primary lung cancer may
develop symptoms that result in lung cancer detection. A person with symptom-
detected cancer begins the following cycle in the Workup And Staging Component. See
Symptom Detection Component for details.

RELEVANT ASSUMPTIONS
Lung Cancer Development
The probabilities of developing each cancer type are assumed independent, conditional
on the covariates (see Relevant Parameters, below). Each month >age 20, only one
cancer can develop. Because the monthly probabilities are on the order of 10E-7, bias
resulting from development of more than one cancer type is negligible.

Lung Cancer Growth
After Spratt, a maximum possible tumor size of 277 mm is assumed (this is consistent
with the largest reported size of 201-300mm diameter in the SEER*Stat database for
60-64 year old white males, 1990-1994). As a simplification, we assume equal growth in
all directions (i.e., spherical), allowing only one diameter to be tracked. The growth of
BACs was truncated at a maximum diameter of 1cm.
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Lung Cancer Progression
By definition, BACs do not progress. Because AJCC stage T3 cancers (i.e., cancers with
extension into adjacent organs) represent only about 5% of NSCLC, we modeled tumor
stage as T1 (≤3cm) or T2+ (>3cm). Involvement of lymph nodes (stages N0, N1, N2, and
N3) dictates treatment options, so nodal status is modeled explicitly (but not specific
nodes within each stage). Once distant spread (M1) has occurred, survival is poor, so
explicit modeling of types of metastases was assumed to be unnecessary. As
hypothesized for breast cancer, growth rate is related to the probability of metastasis.
To reflect observed variations in propensity to metastasize for each histological type,
adenocarcinomas are often more indolent, while small cell lung cancers develop
metastases earlier. We assume that lymph nodes typically (but not always) become
involved before distant spread occurs.

Lung Cancer Symptom Detection
We assume that peripheral cancers must be at least 10mm in diameter to cause
symptoms. Central cancers have a smaller minimum diameter, because they are more
likely to obstruct airways. We assume that metastases from SCLC cause symptoms
faster than metastases from NSCLC. Benign nodules and lymph node involvement do
not cause symptoms that result in lung cancer detection.

RELEVANT PARAMETERS
The parameters in the Natural History Component are informed by calibration (see
Calibration Details and Parameters Natural History).

RELEVANT COMPONENTS
The Natural History Component occurs in every cycle, so can be thought of as a sub-
component of the major states in the LCPM (see Component Overview for schematic).

Sub-components in the Natural History Component are described above or in linked
documents:
lung cancer development, lung cancer growth, lung cancer progression, Symptom
Detection Component, and Benign Component.

DEPENDENT OUTPUTS
The natural history component primarily determines the lung cancer incidence rate, as
well as the type and stage distributions of incident cancers. The natural history
component also primarily determines the survival rates of incident cancers, in
conjunction with the Treatment Component.

The particular staging, work-up, and follow-up algorithms used in a scenario will also
influence the stage distribution and rate of incident cancers, as well as the stage-
specific survival rates (see the Workup And Staging Component). And the rates of
thoracic imaging exams performed for reasons unrelated to screening (Incidental
Imaging Component) will also influence incidence rates, although to a lesser extent
than the natural history components.

RELEVANT RESULTS
See the Results Overview for a description of the outputs from the base case LCPM.
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SCREENING COMPONENT

SUMMARY
This document describes the processes in the model responsible for screen-detection of
asymptomatic lung cancers.

OVERVIEW
Note that during model calibration (to SEER registry data), the screening component
was turned off.

To define a screening program, we can specify eligibility in terms of age and pack-year
histories, as well as screen frequencies and probabilities of adherence to recommended
screenings.

To reproduce results from a particular screening study (e.g., for validation), the model
is populated with simulated trial participants and the screening component is turned
on.

An individual with a positive screening exam proceeds in the next cycle to either the
Follow Up Component or the Workup And Staging Component. The particular
scenario being modeled determines which of these components a person will transition
into.

DISEASE DETECTION MECHANISM
Lung cancer detection can occur in one of 4 ways: 1) by symptom detection of distant
metastases, as a function of the time since metastases developed, varied by N/SCLC; 2)
symptom detection of the primary cancer as a function of size and location; 3) by
incidental detection of an asymptomatic lung cancer on a chest imaging exam
performed for unrelated reasons; and 4) by a screening exam (imaging or biomarker),
in a scenario with screening operating.

For any imaging exam, the probability of detection of asymptomatic cancers is a
function of size, location (peripheral/central) and test characteristics.

SCREENING DISSEMINATION
For screening exams, individuals are screened if they are both 1) eligible for the
screening program being modeled and 2) adherent, which is currently assigned
randomly according to the population-wide probability of adherence.

The probability of incidental (non-screening) imaging exams is a function of age,
region of the U.S., and race. See Incidental Imaging Component. Temporal trends in
these background rates have not yet been explicitly incorporated.
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TYPE / DETECTION INTERACTION
The probability of detection on an imaging exam is a function of nodule size (and
therefore growth rate, indirectly) and location: central lesions are less likely to be
detected. Both growth rate and the proportion central vs. peripheral vary by cell type.
See the Natural History Component.

STAGE / DETECTION INTERACTION
As stated above, the probability of detection of a pulmonary lesion on an imaging
exam is a function of nodule size and location (central/peripheral) and the test
characteristics of the imaging exam. Nodal involvement and distant metastases are not
detected on a screening imaging exam so do not influence screen detection (but do of
course influence symptom-detection - see the Natural History Component).

LENGTH BIAS
Slower-growing lesions persist in the asymptomatic state and are therefore more often
'available' to be screen-detected, on average, than faster-growing lesions. The
probability of detection on an imaging exam is a function of lesion size (and therefore
growth rate, indirectly). The growth rate varies by cell type. See the Natural History
Component.

On average, lung cancers detected on annual screening exams would be expected to
have longer doubling times (i.e., slower growth rates) than interval-detected lung
cancers. Note that a small, slow-growing lung cancer may be referred for follow-up
serial CT exams; if no growth is detectable over a two-year period, the cancer would be
incorrectly diagnosed as benign.

See Screening Biases for background information on lead-time, length-time and
overdiagnosis biases.

DETAIL
Parallel random number generation allows simulation of the same individuals in
screening vs. non-screening scenarios. This allows us to compare the outcomes of
individuals in the two scenarios, as well as the mean life expectancy across a cohort, for
a better understanding of the range of individual outcomes attributable to screening.

When simulating a specific screening study, individual-level data from the study (if
available) is used to populate the LCPM with a cohort similar to the study participants.
See Protected Health Information.

RELEVANT ASSUMPTIONS
We assume that nodal involvement and distant metastases are not detected on a
screening imaging exam. See also the Assumption Overview.
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RELEVANT PARAMETERS
To enable simulation of screening, one parameter is set in the input file (intervention =
1 for screening, vs. 0 for no screening), and additional parameters define eligibility
(based on pack-years of smoking exposure, years since quitting, and age), adherence
rates, and screening frequency (modality, frequency, maximum number of screens, and
follow-up algorithm).

Sensitivity and specificity of the screening exam also affect the efficacy of the screening
program. See Parameters Test Performance.

Indicators record screen results and cancers detected.

RELEVANT COMPONENTS
Under a screening scenario, individuals in the general population state are screened if
they are 1) eligible, and 2) adherent. Persons in the Follow Up Component, the Workup
And Staging Component, and the Treatment Component are not screened.

Screening will increase the rate of detection of lung cancer in a population and
therefore impact the Incidence Component. Similarly, by detecting a lung cancer
earlier, screening can alter the treatment a patient would receive in the Treatment
Component.

DEPENDENT OUTPUTS
Because screening detects asymptomatic cancers, prevalence and incidence rates
depend on the screening program in place (if any), as do stage distributions and cell
types.

To date, we have used outputs from simulations of two single-arm screening studies to
calibrate certain endpoints, to validate the LCPM, and to predict outcomes from
hypothetical control arms.

RELEVANT RESULTS
The Mayo Clinic conducted a single-arm study of helical CT screening for lung cancer
in current and former smokers. Using data provided by the Mayo Clinic (see Protected
Health Information), we replicated the trial population by bootstrapping demographics
and smoking histories from individual records. One endpoint (baseline prevalence)
was used to calibrate the proportion of adenocarcinoma that was BAC (see Natural
History Component). Remaining endpoints were reserved for use as validation
endpoints.

See the validation section of Calibration Validation Results for a link to a description of
validation of the LCPM using the LSS study endpoints.

See the Results Overview for analyses of screening programs.
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TREATMENT COMPONENT

SUMMARY
This document describes how treatment after diagnosis is modeled.

OVERVIEW
To enter the treatment component, patients must have been diagnosed with lung
cancer in the Workup And Staging Component. Treatment is modeled as occurring in
the month(s) after reaching the 'treatment and survival' state. Patients remain in this
state until death (from any cause). See also the Survival Mortality Component.

Treatment consists of either removal of the primary lung cancer (i.e., resection) or
systematic therapy. Tumors which respond to systemic therapy are reduced in size

(diameter), following conventional guidelines for solid tumors.1

TREATMENT DISSEMINATION
Treatment is assigned based on the diagnosed stage and type (NSCLC/SCLC). We
currently assume all patients receive care according to consensus guidelines (e.g.,
National Comprehensive Cancer Network, NCCN).

We are in the process of adding a 'usual care' option that more closely approximates
observed practice patterns. The usual care option will allow us to explicitly vary
treatments with calendar year, which will be particularly important in the Population
LCPM.

TREATMENT EFFICACY
Treatment effectiveness is incorporated as follows: a person with no occult metastases
whose primary cancer is resected is assigned competing risks consistent with a person
of the same smoking history – not stage I survival from SEER. On the other hand, if
occult metastases are present in a person who undergoes resection for an apparent
stage I cancer, the metastases continue to develop as before. (The presence of
undetected micro metastases is likely the cause of the poor observed survival after
“curative” resection in many patients.)

If a second, undetected primary tumor remains (in a non-resected lobe), metastasis can
occur. Note that removal or sampling nodes at resection can result in re-assigning stage
at diagnosis, but provides no survival benefit.

For systemic therapies, we use probabilities of partial and complete responses as
published in the literature (see Parameters Treatment). A response results in a
reduction of the size(s) of existing lung cancer(s), and thereby may delay disease
progression.

We do model adverse effects of screening and treatment. Operative mortality can occur
during resection, mediastinoscopy, or VATS, in diseased or non-diseased persons
(iatrogenic deaths are tracked). We have not yet incorporated complications (e.g.,
pneumothorax) or quality of life.
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DETAIL
The default Treatment Component simulates all patients as receiving guideline care.

Only individuals assigned the status of operative candidate were eligible for surgical
resection, regardless of stage. To account for patients who were not operative
candidates, we estimated proportions of SEER cases who were NSCLC stage I and II
and either refused surgery or had contraindications.

As observed in clinical practice, a small proportion of operative candidates with stage
LS (limited stage) SCLC underwent resection, with the remaining patients receiving
chemoradiation.

Operative candidates with NSCLC stages I through IIIa were assigned resection, with
the remainder and all stage IIIb cases receiving chemoradiation.

Stages IV (NSCLC) and ES (SCLC) were assigned chemotherapy.

See Parameters Treatment.

RELEVANT ASSUMPTIONS
Death from lung cancer is unlikely to occur without detection of metastases (due to
symptoms or otherwise), so we assume that once metastases are detected (by
symptoms or any modality), survival is as observed in SEER for stage IV-detected
cancer. We estimated cause-specific (net) survival for cases diagnosed as stage IV in the
years 1990 – 2000, stratified by 10-year age group, race, and gender. Net survival (i.e.,
in absence of other causes) was used because persons face competing risks elsewhere

in the model.2

Median survival of stage IV lung cancer is uniformly less than one year, so survival for
M1 (stages IV or ES) is modeled as exponential.

See also the Assumption Overview.
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RELEVANT PARAMETERS
Parameter values that define treatment efficacy are probabilities of complete or partial
response, using the definition of complete as no visible cancer at 4 week follow-up and

partial as ≥30% decrease in diameter.1 Probabilities of complete and partial responses
vary by type, with estimates taken from the literature. A cancer that partially responds
to therapy is decreased in diameter by 30%, and a cancer that completely responds to
therapy is reduced to 1.5mm diameter, or below the 2mm detection threshold assumed
for helical CT.

Based on the new diameter, an adjusted ‘time since cancer developed’ is calculated,
retaining the original growth parameter, alpha. The new ‘time since cancer developed’
is used to increment growth in all future cycles.

To account for observed differences in growth rates of cancers pre- and post-therapy,
we include a parameter that allows faster-growing cancers (cancers with a parameters
over a specified cutoff) to be more or less likely to respond to therapy. These
parameters were initially set to values that conferred no effect (probabilities of
response vary by cell type and treatment) but were varied during calibration.

See Parameters Treatment.

RELEVANT COMPONENTS
Treatment assignment occurs as the final step in the Workup And Staging Component
(i.e., after the stage at diagnosis is assigned). The treatment itself is the first step in the
Treatment and Survival state.

The sensitivity and specificity of the staging algorithm influences the treatment
assignment. The specific treatment assigned and the treatment's effectiveness both
influence the survival rate.

DEPENDENT OUTPUTS
Survival by stage is dependent on the treatment assigned and the treatment's
effectiveness. For example, assigning systemic therapy instead of resection to a patient
with resectable disease will result in a shorter survival time.

Further, the sensitivity and specificity of the staging algorithm (Parameters Test
Performance) influence the treatment assignment. For example, if the staging tests
performed on a hypothetical patient miss the involvement in a contralateral node, the
individual will be understaged and receive an inappropriate treatment.

Mortality rates are calculated as a secondary output, based on age at death among lung
cancer patients.

Incidence rates, on the other hand, depend on neither the treatment assigned nor the
treatment effectiveness.

RELEVANT RESULTS
See Output Overview and Results Overview.
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SURVIVAL MORTALITY
COMPONENT

SUMMARY
This document describes how lung cancer survival is modeled and describes
estimation of both lung cancer-specific and other-cause mortality.

OVERVIEW
Once a hypothetical patient is diagnosed with lung cancer, he or she moves into the
'treatment and survival state', and remains there until death. The Treatment
Component precedes the Survival Mortality Component.

The patient can die from any cause while in this state. Relative risks of each cause of
death are a function of underlying disease state, treatment received, any surveillance
performed, age, gender, race, and smoking history.

SURVIVAL ESTIMATION COVARIATES
Lung cancer-specific survival for patients diagnosed at stages I-III (i.e., M0) is based on
the true, underlying disease stage and the treatment assigned. Stage-specific survival
for patients with M0 cancers is a calibration target for the LCPM, not an input. See
Calibration Details and below.

Once a person is diagnosed (by symptoms or any modality) as stage IV (i.e., M1), lung
cancer specific survival is assumed exponential. Cell-type (N/SCLC) specific median
survival by age, gender, and race group was estimated from SEER for appropriate
calendar years as inputs.

SURVIVAL AFTER CLINICAL DETECTION
Same as above.

SCREEN DETECTION BENEFIT
Screening may detect cancers that have not yet metastasized.

MORTALITY REDUCTION
Resection of an early-stage cancer is curative if 1) no occult metastases remain and 2)
no additional lung cancers arise. The person is subject to competing mortality risks
appropriate to his/her age and smoking history (see below).

Resection of an early-stage cancer in a patient with occult metastases does not confer a
survival benefit.

Mortality rates are calculated after the last individual in a simulation run 'dies', and are
merely counts of lung cancer deaths by age at death, divided by the population at risk.
Mortality rates are therefore completely dependent on the incidence and survival rates,
and are merely an additional way to present the same information.
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OTHER CAUSE MORTALITY
The Population LCPM assigns other cause mortality according to estimates from the
Smoking History Generator, a common input for the lung cancer models in CISNET.

The original single-cohort LCPM assigns other-cause mortality risks using results from
an independently-conducted analysis. We developed a Bayesian evidence synthesis
model to estimate cause-specific mortality rates stratified by age, sex, race, and

smoking status.1 We combined three data sources: 1) individual survey data on
smoking status, demographics, and date and cause of death; 2) population data on
numbers of deaths by cause; and 3) cohort study estimates of smoking-related
mortality risks, correcting for known inconsistencies between two of the data sources.
Risks of heart disease and other causes (i.e., non-lung cancer, non-heart disease) are
used as inputs for the LCPM.

LEADTIME
Stage-specific survival is not an input, but rather a calibration target (see Calibration
Details and Output Overview).

Estimates of lead, length, and overdiagnosis biases (see Screening Biases) are outputs
of the model, obtained by simulating the same cohort with and without screening.

DETAIL
If a patient undergoes curative resection of an early stage lung cancer and harbors no
occult metastases, the patient is assigned competing mortality risks appropriate for his
or her age, gender, race, and smoking status.

If a patient undergoes resection of an early stage lung cancer but does harbor occult
metastases, the metastases continue to develop as before, and can cause symptoms.
Once symptomatic, the person is assigned a stage IV survival as above.

Patients who undergo systemic therapies may respond to the therapy, which results in
a reduction in the size of the primary lung cancer(s), and therefore a reduction in the
monthly probability of disease progression (see Natural History Component).

RELEVANT ASSUMPTIONS
See the Assumption Overview, the Treatment Component and the Natural History
Component.

RELEVANT PARAMETERS
See Parameters Treatment for values of parameters that govern effectiveness of
treatment and influence survival rates.

RELEVANT COMPONENTS
See the Treatment Component and the Natural History Component.
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DEPENDENT OUTPUTS
Stage-specific survival is dependent on this component (Calibration Survival1).
Incidence rates, however, are not dependent on this component.

RELEVANT RESULTS
See Results Overview and Output Overview for more information on calibration and
validation outputs.

REFERENCES:
1 McMahon, P. M., Zaslavsky, A. M., et al. “Estimation of mortality rates for disease

simulation models using Bayesian evidence synthesis” in Medical Decision
Making 2006; 26: : 497-511
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OUTPUT OVERVIEW

SUMMARY
This document describes the types of outputs generated by the LCPM.

OVERVIEW
See Results Overview for a summary of how the various outputs are used for
calibration, validation, predictions, and analyses.

Some general categories of outputs include:

incidence rates;
characteristics of incident cancers;
survival and mortality rates;
screening test results;
effectiveness of screening tests;
estimation of screening biases.

OUTPUT LISTING
Within each general category, some examples of specific outputs include:

incidence rates;
Age-specific incidence rates, by gender, race, and calendar year (used as calibration
endpoints for model development; see Calibration Incidence1)
Age-adjusted incidence rates (predictions from the Population LCPM)

characteristics of incident cancers;
Size, type and stage distributions of incident cancers (used in Calibration Size Type
Stage1 as calibration endpoints for model development)

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

MGHITA
Output Overview

Page 182 of 288 All material © Copyright 2003-2011 CISNET



survival and mortality rates;
Survival curves by type (SCLC vs. NSCLC) and stage at diagnosis (used in Calibration
Survival1 as calibration endpoints for model development)
Mortality rates (used in Validation Cohort Studies1 as validation endpoints, in
comparison to published cohort studies)
Age-adjusted mortality rates (used in Calibration USMortality1 as calibration
endpoints for the Population LCPM)

screening endpoints;
Estimation of effectiveness of screening (see Results Overview for publications)
Reproduction of observed endpoints in the LSS screening trial (used in Validation
Lung Screening Study1 as validation endpoints)
Screening trial endpoints:
-stage shift
-number of surgeries (appropriate and inappropriate)
-number of invasive work-up procedures (appropriate and inappropriate)

estimation of screening biases
By simulating both screened and unscreened scenarios, the model estimates lead-time,
length-time, and overdiagnosis (see Screening Biases).
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RESULTS OVERVIEW

SUMMARY
This document will discuss results from the LCPM and provide links to published
evaluations of lung cancer control interventions.

OVERVIEW
We see simulation as a tool for integrating data from national sources such as SEER
with individual-level data from screening trials. By synthesizing available evidence, we
can impute unobserved results.
This is conceptually similar to the ‘borrowing strength’ idea from Bayesian statistics.
Extrapolating from available data allows us to pose a wide range of interesting
questions regarding cancer control interventions in a wider variety of populations than
represented in trials.

Results from the LCPM have been used to calibrate and validate the model, and
evaluate screening programs, smoking cessation programs, and treatments. Additional
types of results could include estimation of natural history parameters.

RESULTS LIST
CALIBRATION AND VALIDATION
See Calibration Validation Results for results of calibration and validation.

Kong CY, Mc Mahon PM, Gazelle GS. Calibration of Disease Simulation Models Using
an Engineering Approach. Value in Health. 2008 In Press. See Calibration Methods
Research for a description of this evaluation of advanced engineering methods used for
calibration of the LCPM.

SCREENING EVALUATIONS
McMahon PM, Kong CY, Johnson BE, Weinstein MC, Weeks JC, Kuntz KM, Shepard
JA, Swensen SJ, Gazelle GS. Estimating Long-term Effectiveness of Lung Cancer
Screening in the Mayo CT Screening Study. Radiology. 2008 Jul;248(1):278-87. Epub
2008 May 5. PMID: 18458247 [Pub Med - as supplied by publisher]

See also Validation Lung Screening Study1 for results from simulating the CT-screened
arm of the LSS study.

McMahon PM, Kong CY, Weinstein MC, Tramontano AC, Cipriano LE, Johnson BE,
Weeks JC, Gazelle GS. Adopting helical CT screening for lung cancer: potential health
consequences during a 15-year period. Cancer. 2008 Dec 15;113(12):3440-9. PMID:
18988293 [Pub Med - indexed for MEDLINE]
See Index Supplement Cancer for information that might be helpful for readers of this
analysis.

An evaluation of the cost-effectiveness of helical CT screening for lung cancer is
underway and will be described in a future results document.
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TREATMENT EVALUATIONS
Evaluations of specific treatments (ablation, other) will be described in future results
documents.

POPULATION TRENDS
Trends in lung cancer incidence and mortality under various scenarios (e.g., the
Smoking Base Case) will be described in future results documents.
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SUMMARY OF VERSIONS
Summary of differences and similarities between the original single cohort LCPM (v.1)
and the Population LCPM (v.2).

Original single cohort LCPM (v.1)

*Used for published screening evaluations and to document calibration methods.1,1,2

*Smoking histories for U.S. cohorts were derived from survey data, as described in the
Population Component.

*Competing mortality risks are stratified by smoking status, age group, race, and sex.3

*Natural history parameter values are described in Parameters Natural History.
*Calibration targets for birth cohort terms were age-specific incidence for 5 cohorts in
1990 (males aged 50 and 70, and females aged 50, 60, and 70).
*Calibration targets for period terms - not applicable.

Population LCPM (v.2)
*Used for all analyses in Risk Analysis Monograph and Moolgavkar, et al.
(forthcoming)
*Smoking histories for U.S. cohorts and competing mortality risks by smoking status,
age, and sex were from the shared smoking history generator (cite Chapter 3 and the
Smoking History Generator Component.
*Natural history parameter values consistent with a stronger relationship between
years of smoking and lung cancer risk; weaker relationship between cigarettes per day
and lung cancer risk; greater benefit from quitting. See also Calibration Details.
*Calibration targets for birth cohort and period terms were age-adjusted mortality rates
for US population 1975-2000

Similarities
Calibration targets for natural history parameters (excluding birth cohort and period
terms) were age-specific incidence rates for cohort of white males aged 60 in 1990, and
cell, stage, and size distributions as described previously (cite) and in Calibration
Details.

REFERENCES:
1No Reference found for: McMahon, 2008

2No Reference found for: Kong, 2009

3 McMahon, P. M., Zaslavsky, A. M., et al. “Estimation of mortality rates for disease
simulation models using Bayesian evidence synthesis” in Medical Decision
Making 2006; 26: : 497-511
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CALIBRATION VALIDATION
RESULTS

SUMMARY
This document summarizes the calibration of the LCPM and validation to additional
endpoints.

RESULT TYPE
Other

OVERVIEW
Calibration and validation results indicate no immediately obvious departure from
observed data, lending credence to simulations of hypothetical scenarios (i.e., those
that extrapolate past observed data).

Many limitations of the LCPM are common to all studies employing simulation
models. Tradeoffs must be made between increasing complexity and practical limits on
the number of unknown parameters that can be identified using available data. A
‘deep’ model like the LCPM has more complexity (which allows us to evaluate
different workup algorithms) than a ‘shallow’ statistical model that estimates transition
probabilities (e.g., stage I to stage II), but at the cost of greater risk of identifiability
problems. To reduce the risk of identifiability issues biasing results, we continue to
select additional calibration targets, refine calibration approaches, remove parameters
where possible, and identify additional sources of data for inputs and validation.

METHODS
See the Population Component and Calibration Details for descriptions of calibration
of the original single cohort LCPM and the more recent Population LCPM.

For both the single cohort LCPM and the Population LCPM, birth cohort terms were
estimated.

RESULT
FIT TO CALIBRATION TARGETS

Primary Targets, Derived from SEER

The single cohort LCPM produced a good fit to incidence by age for cohorts of 50-, 60-,
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and 70 year-old whites (Calibration Incidence1). We also achieved good fits to size,
type, and stage distributions (Calibration Size Type Stage1). The best-fitting set slightly
overestimated ≥3-year survival for NSCLC stages I and II (Calibration Survival1). This
overestimation is due to our assumption that all patients underwent guideline staging
and treatment; many patients represented in SEER did not receive guideline
treatments. Survival of patients with limited stage small-cell lung cancer was
accurately predicted.

The Population LCPM produced a good fit to age-adjusted lung cancer mortality rates
over the period 1975 to 2000 (see Calibration USMortality1).

Secondary Targets, Derived from Cohort Studies and Literature

The single cohort LCPM predicted annual mortality rates per 100,000 non-smokers and
lung cancer-specific mortality ratios for current (vs. never) smokers (by 5-year age
group) that agree with observed data (Calibration Cohort Study1).

The LCPM predicted lung cancer outcomes in non-smokers and in autopsy studies that
agreed with published findings (Calibration Non Smokers Autopsy1).

VALIDATION

Validation is documented here (Validation Cohort Studies1 and Validation Lung
Screening Study1).

DISCUSSION
After calibration and validation of the LCPM, the model could be used to evaluate
screening programs.

Because screening is not part of usual clinical practice, most lung cancers in the SEER
registry were diagnosed on the basis of symptoms. The SEER calibration targets used
to inform estimates of incidence and survival were therefore supplemented with
screening trial data to refine estimates regarding noninvasive BACs, which appear
with greater frequency in screening studies.

CONCLUSION
The LCPM generates outputs consistent with multiple data sources. Predictions from
the model regarding the effectiveness of screening or other interventions are however
extrapolations beyond available data, and are subject to all assumptions built in to the
model.

RELEVANT ASSUMPTIONS
The base case assumption that all individuals receive guideline care is necessary, given
the lack of data on staging practices in the US. However, this assumption likely yields
fewer understaged patients and therefore higher survival for early-stage cancers than
in SEER data used for calibration.

See also Assumption Overview.
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RELEVANT PARAMETERS
Calibration was used to estimate unobservable parameters (e.g., those that govern
metastasis). See Parameters Natural History for details.

RELEVANT OUTPUTS
See Output Overview.
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SCREENING BIASES
Screening trial results are affected by several well-known biases that make

interpretation of results challenging.34 A test that detects earlier-stage disease, will, by
definition, prolong observed survival times (lead-time bias). Assuming some
individual heterogeneity in disease progression rates, periodic screening will
preferentially detect slowly progressing cases, simply because such cases persist longer
in the asymptomatic state (length-time bias). The extreme of length-time bias,
overdiagnosis refers to both screen detection of cases that would not have caused
symptom detection or death (i.e., without screening, the person would die of
competing causes, unaware of the presence of the disease) and to detection of pseudo-

disease (e.g., cases with a self-resolving clinical course).6

REFERENCES:
1 Reich, J. M. “Improved survival and higher mortality: the conundrum of lung cancer

screening.[see comment].” in Chest 2002; 122: 1: 329-37
2 Black, W. “Overdiagnosis: An underrecognized cause of confusion and harm in

cancer screening [Editorials]” in Journal of the National Cancer Institute 2000;
92: 16: 1280-1282

3 Patz, E., Goodman, P., et al. “Screening for lung cancer [Review]” in New England
Journal of Medicine 2000; 343: 22: 1627-1633

4 Eddy, D. “Screening for lung cancer.” in Annals of Internal Medicine 1989; 111: :
232-237

5 Woods, William G., Gao, Ru-Nie, Shuster, Jonathan J., Robison, Leslie L., Bernstein,
Mark, Weitzman, Sheila, Bunin, Greta, Levy, Isra, Brossard, Josee, Dougherty,
Geoffrey, Tuchman, Mendel, Lemieux, Bernard “Screening of infants and
mortality due to neuroblastoma” in N Engl J Med 2002; 346: 14: 1041-1046
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CALIBRATION DETAILS

OVERVIEW

Calibration was used to estimate values of unobservable natural history parameters
and uncertain parameters (those for which literature estimates provided ranges of
values). Each unique combination of model inputs (tables, distributions, and scalar
values) is referred to as a parameter set. A combination of grid search and simulated
annealing was used to identify the parameter set that minimized the total sum of
squared errors between model output and 8 primary calibration targets. Of the 25
parameter sets with the best fit to the primary calibration targets, we chose the set with
the best fit to 5 secondary calibration targets. Extensive debugging was performed
throughout model development and prior to final calibration.

CALIBRATION TARGETS
Primary: Age-specific incidence, cell type, stage, and size distributions of incident
cancers, survival curves (4 stages).
Secondary: Autopsy data, mortality in never-smokers, percent symptomatic at
detection, lung cancer mortality.

Please see Calibration Methods Research for information on a comparison of
calibration approaches.

ORIGINAL SINGLE COHORT LCPM

We chose a large cohort (white males aged 60 in 1990) as the initial calibration cohort,
setting the birth cohort term to 1.0 (reference group). Once calibration to this large
cohort was completed, the same parameter set was used to generate incidence by age
predictions for cohorts of 50 and 70-year old white males and 50, 60, and 70-year old
white females. To account for observed birth cohort trends in lung cancer risks and

allow for differences in baseline risk by gender,1,2,3 we added a term that modifies the
monthly risk of lung cancer development (all cell types), stratified by gender. The birth
cohort term was adjusted in these cohorts such that the LCPM generated observed age-
specific incidence rates. See Population Component for a description of smoking

histories used in the single cohort LCPM and4 for a description of other cause mortality
rates, and how these differed from inputs for the Population LCPM.
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POPULATION LCPM

The Population LCPM assigns smoking histories and other cause (non- lung cancer)
mortality risks from the Smoking History Generator that is common to all CISNET
lung models that simulate populations. The Population LCPM was re-calibrated to the
same calibration targets used for the original single cohort LCPM (see below) to
generate a revised parameter set ("version 2") that assigns a stronger dose-response
relationship between years of smoking (duration) and lung cancer risk. The effect of
cigarettes per day (dose) is correspondingly lower in the "version 2" parameter set. See
Parameters Natural History for further details on smoking parameters and differences
in birth cohort terms between parameter sets (versions 1 and 2).

TARGETS

See Output Overview for links to comparisons of targets and outputs from the
calibrated LCPM.

DEFINING RANGES FOR UNOBSERVABLE NATURAL HISTORY
PARAMETERS

See Natural History Component and Parameters Natural History. During calibration,
some parameter values could be ruled out as implausible, after consultation with
clinical experts and past research. For example, the intercept terms were ordered to
reflect observed risks of each cell type among non-smokers. Lung cancer risks increase
with age and SY and decrease with YSQ. SY has the strongest effect on development of
small cell cancers, and the effect of YSQ was weakest for adenocarcinoma. The amount

of BAC as a proportion of adenocarcinoma was varied from 0 to 0.45,6 and estimated to
be 0.2.

Initial values of symptom detection parameters were selected so that the cumulative
probability of symptom detection from (true) distant metastases was nearly 1.0 by 3
years, i.e., very few patients had asymptomatic/undetected metastases at 3 years after
diagnosis, but it was not impossible. By comparison, the estimated growth duration of
metastases was 3.8 years (faster growth than the primary tumor) in a published breast
cancer model. Initial values of the intercept term and coefficient on tumor volume for
symptom detection of primary cancers were chosen so that once a cancer passed the
threshold size, the probability of symptom detection increased slowly to yield lung
cancers of similar sizes as those observed in SEER. Adenocarcinomas were assumed to
be less aggressive than SCLCs.
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DEFINING RANGES FOR UNCERTAIN PARAMETERS

We classified parameters as uncertain if literature estimates provided ranges of values.
During calibration, test characteristics were allowed to vary because verification bias
likely affects many published sensitivity and specificity values. See Parameters Test
Performance and Parameters Treatment for details.

RESULTS

See Calibration Validation Results for model calibration and validation.
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FOLLOW UP COMPONENT
As described in the Incidental Imaging Component, patients with incidentally detected
nodules suspicious for lung cancer are triaged according to the size of the nodule.
Patients with nodules over the threshold diameter are sent to the Workup And Staging
Component.

In sensitivity analyses of a manuscript in press, we examined scenarios where nodules
smaller than a cutoff size (e.g., 4mm diameter) are ignored, with patients returning to
the general population.

Smaller nodules are followed-up with serial high-resolution CT exams (even in the
absence of screening), with a specified periodicity (see below) over 24 months.
Detection of new small nodules re-starts the 24-month follow-up sequence. Nodules
that exhibit no detectable growth (see below) after 2 years of follow-up are diagnosed

as benign;1 detectable growth on any subsequent imaging exam is considered
sufficient to cause suspicion for lung cancer.

Structural Parameters in the Follow Up Component
(See Parameter Overview for definition):
1) A threshold (or 'cutoff') diameter of 8mm was used and is generally in agreement

with a low (5%) biopsy rate for 4-9mm nodules in a recent trial2.
2) Depending on the scenario, follow-up could occur with a fixed periodicity of 1, 3, 6,

12, and 24 months3 or be managed according to the size of the largest nodule found

(similar to published algorithms from CT screening trials)4.

3) For the base case, the minimum detectable growth on sequential exams was 2mm1.
4) An estimated 50% of growing nodules are excisionally biopsied using VATS (video-
assisted thoracic surgery).

REFERENCES:
1 Benjamin, MS, Drucker, EA, McLoud, TC, Shepard, JO “Small pulmonary nodules:

detection at chest CT and outcome” in Radiology 2002; 226: : 489-493
2 Pinsky, P. F., Marcus, P. M., Kramer, B. S., Freedman, M., Nath, H., Kvale, P.,

Reding, D. “Diagnostic procedures after a positive spiral computed
tomography lung carcinoma screen” in Cancer 2005; 103: 1: 157-163

3 Rubins, JB, Rubins, HB “Temporal trends in the prevalence of malignancy in
resected solitary pulmonary lesions” in Chest 1996; 109: : 100-103

4 Swensen, S., Jett, J., et al. “Screening for lung cancer with low-dose spiral computed
tomography” in American Journal of Respiratory and Critical Care Medicine
2002; 165: : 508-513
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WORKUP AND STAGING
COMPONENT

SUMMARY
This document describes the one-month cycle during which a patient with a
pulmonary nodule suspicious for lung cancer undergoes clinical workup to establish a
diagnosis of cancer or benign histology. Patients with cancer then undergo staging
tests to establish the extent of disease progression.

OVERVIEW
Clinical algorithms for workup and staging are modeled explicitly, so that differences
in patient management strategies can be compared.

Patients enter this component if they have a pulmonary nodule suspicious for lung
cancer, detected by any modality and large enough to be biopsied. Patients with
incidentally detected nodules smaller than the threshold go to the Follow Up
Component.

Biopsy-confirmed malignancies are clinically staged (in the same cycle) based on
practice guidelines from the National Comprehensive Cancer Network (NCCN,
version 2000, for calibration to 1990-2000) and assigned both TNM and AJCC stages.

Patients whose pulmonary nodules are definitively diagnosed as benign start the next
cycle in the general population state. Patients with a diagnosis of lung cancer begin the
next cycle in the Treatment Component.

DETAIL
Patients presenting with symptom-detected cancers undergo biopsy to establish the
histological type and a high-resolution CT examination to stage lymph nodes and
determine tumor size, if not already known.

All patients undergo one high-resolution CT examination to determine calcification
pattern and/or stage lymph nodes, per NCCN guidelines.

An estimated 50% of patients with N0/1 and evidence of primary tumor growth on CT
are sent for excisional biopsies using VATS (video-assisted thoracic surgery). Non-
operative candidates and remaining N0/1 patients undergo biopsy of the primary
tumor (bronchoscopy for central nodules and TTNA for peripheral nodules).

Patients with clinically evident enlarged mediastinal lymph nodes (N2/3 on CT)
undergo mediastinoscopy, which can establish a diagnosis of lung cancer and provide
staging information. Patients with negative mediastinoscopy results are treated as N0/
1.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

MGHITA
Workup And Staging Component

Page 195 of 288 All material © Copyright 2003-2011 CISNET



RELEVANT ASSUMPTIONS
The assumption that all patients undergo staging tests in accordance with consensus
practice guidelines is a limitation of the current LCPM. Many publications have
demonstrated that a large proportion of lung cancer patients do not receive guideline
treatments, but information on staging practices in the U.S. is limited.

Our assumption of guideline staging, which is often more invasive/aggressive than
usual care, will result in higher survival rates for earlier staged cancers, because
patients with more advanced disease (and lower survival) will be correctly identified
and categorized into later stages.

RELEVANT PARAMETERS
Sensitivity and specificity of the diagnostic and staging tests will influence patient
trajectories through this state (Parameters Test Performance).

Other input parameters define the scenario being simulated. For example, we will have
the flexibility to simulate either guideline or usual care staging patterns.

RELEVANT COMPONENTS
The Workup and Staging Component includes sub-components specific for NSCLC
and SCLC, which have different characteristics and therefore different staging systems.

A "Usual Care" version of the staging component is in development and will be
available for comparison to guideline staging.

DEPENDENT OUTPUTS
Distributions of stage at diagnosis and survival outputs rely on this component.
Natural History and Incidence do not depend on this component.

RELEVANT RESULTS
Size, Type and Stage Distributions of Incident Cancers (Calibration Size Type Stage1)

Survival Curves for NSCLC and SCLC (Calibration Survival1)
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PARAMETERS NATURAL HISTORY
See the Natural History Component and Calibration Details for explanations of the
way the LCPM models lung cancer natural history and how the unobservable
parameters were estimated. This document contains additional detail not already
provided.

LUNG CANCER DEVELOPMENT

The logistic model for development of a lung cancer was described in the Natural
History Component. There are type-specific parameters for the effects of age and
smoking history. We assume that beta_highrisk = ln(2), equivalent to a HR of 2 for
individuals positive for the susceptible genotype, independent of age, gender, smoking
status and pack-years. As a candidate ‘susceptibility’ genotype, we model the
combined genotype of GST P1 (GG) and p53 (Arg/Pro or Pro/Pro) to occur with an

estimated population frequency of 4.7% (no linkage).1 The amount of BAC as a
proportion of adenocarcinoma was varied from 0 to 0.4 during calibration and was
estimated to equal 0.2.

As described in Calibration Details, values of smoking-related natural history
parameters differ between the original single cohort LCPM and the Population LCPM.

LUNG CANCER LOCATION

Each newly-developed lung cancer is assigned a location, with indicators for the
specific lobe in the lung and central/peripheral location. Most lung cancers occur in
upper lobes, and the proportion central varies by cell type (more SCLC are central
compared to adenocarcinomas).

LUNG CANCER GROWTH

See Table Growth Parameters. Lung cancers was assumed to grow 2-fold faster in
smokers, although the difference may be due at least in part to ‘type mix’, i.e., non-

smokers are more likely to develop slow-growing adenocarcinomas.2,3,4 The growth of
BACs was truncated at 1.0 cm diameter (detectable by CXR). For non-BACs, we

assumed a maximum possible tumor size of 27.7 cm,5 consistent with the largest
reported size of 20.1-30.0cm diameter in the SEER*Stat database.
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LUNG CANCER PROGRESSION

Mean (SD) unadjusted threshold volumes for SCLC ranged from 0.61 (0.65) ml for N1
involvement to 4.07 (4.13) for N3 involvement and 4.71 (4.14) for distant metastases.
Corresponding unadjusted threshold volumes for NSCLC ranged from 3.34 (4.09) ml
for N1 involvement to 3.8 (4.64) for N3 involvement and 2.62 (3.18) for distant
metastases. Adjustments were then estimated via calibration to allow the propensity to
progress to vary by cell type and be correlated with the growth parameter assigned to
the person's cancer. Note that the final estimated volume at metastasis development is
an output of the model and will vary across populations that differ in terms of age,
smoking history, and scenario (e.g., whether screening is in place).

SYMPTOM DETECTION

See the Symptom Detection Component. The cumulative probability of symptom
detection from (true) distant metastases was over 95% by 3 years (all cell types
combined). By comparison, the estimated growth duration of metastases was 3.8 years

in a breast cancer model.6 Treatment with targeted therapies (eg, erlotinib) will
influence the rate of symptom detection from metastases.
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PARAMETERS TEST PERFORMANCE
Diagnostic test characteristics (sensitivity and specificity) determine the probabilities of
detection and/or diagnosis of lung cancers or benign lesions.

PULMONARY NODULES
Sensitivities of imaging examinations for peripheral pulmonary nodules are input from
tables indexed by diameter of the lesion. Sensitivities for a central lesion of the same
diameter were assumed to be 25% lower than those for peripheral lesions. We derived
sensitivities from the literature to test during calibration.

COMPUTED TOMOGRAPHY (CT)
Helical CT was estimated to have a sensitivity of 0.63 for 1-4mm peripheral nodules,
0.77 for 4-8mm peripheral nodules, and 1.0 for peripheral nodules >8mm. High-
resolution CT was assumed to have equivalent sensitivity for detecting presence of a
nodule as helical CT (by size), but to have greater resolution for calcification patterns.
As in clinical practice, an estimated 11% of benign nodules are diagnosed by high-
resolution CT as benign on the basis of calcification pattern (not explicitly modeled).
CT could occur in several components: Incidental Imaging Component, Workup And
Staging Component, Screening Component, and during surveillance for recurrent
disease in the Survival Mortality Component.

CHEST X-RAY (CXR)
The sensitivity of CXR was estimated to be approximately 25% to 50% of that of helical
CT, and to be less than 1.0 at 16mm. The minimum detectable size was assumed to be
7.5mm. CXR could occur in the Incidental Imaging Component.

Specificity for both helical CT and CXR is assumed to be 0.98 (per person, or 0.997 per
nodule). Specificity of high-resolution CT for pulmonary nodules was assumed to be
1.0.

STAGING EXAMINATIONS

COMPUTED TOMOGRAPHY
High-resolution CT was estimated to have a sensitivity for nodal involvement of 0.63

(average of N1, N2/3) and a specificity of 0.6.1,2

BRONCHOSCOPY
Sensitivity of bronchoscopy is defined as the probability of establishing a definitive
diagnosis on the basis of cells recovered from the nodule. The sensitivity increases with
increasing size of the nodule. For cancer, the sensitivity is 5% for nodules less than
20mm diameter, 20% for nodules 20-29mm diameter, and 48% for nodules 30-40mm
diameter. Establishing a specific diagnosis (of the many possible) for a benign nodule is

more difficult; the sensitivities are lower for benign nodules of the same size.3

Bronchoscopy was assumed to have a sensitivity of 0.5 for malignant nodal

involvement.4
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MEDIASTINOSCOPY
Sensitivity of mediastinoscopy for cancer in patients with enlarged lymph nodes is

estimated at 0.92 (range, 0.88, 0.94),2,5 and operative mortality is estimated at 0.3%.5

Reflecting common practice of not initiating therapy without pathological proof of

lung cancer, we assume perfect specificity for mediastinoscopy.5

TTNA
The sensitivities of trans-thoracic needle aspiration (TTNA) for malignancy and benign

diagnoses were indexed by the size of the nodule, informed by literature estimates.6,7,8

VATS
VATS is assumed to have perfect accuracy at identifying malignant vs. benign disease
and to include sampling or removal of nodes for confirmation of stage (perfect

sensitivity and specificity). VATS had an operative mortality of 0.5%.9

METASTASES
A generic test for staging metastases (i.e., those not diagnosed on the basis of
symptomatic presentation) is modeled with perfect specificity. Sensitivity for
metastases was estimated during calibration; we tested functions of time since
metastases developed and constant values of 0.4 to 0.5 derived from published

sensitivities for bone scintigraphy and brain/bone MRI.10,11

OMITTED TESTS
We omitted sputum cytology due to its low sensitivity relative to bronchoscopy and
positron emission tomography (PET) staging because it was uncommon during our
calibration period (1990 to 2000).
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PARAMETERS TREATMENT
Eligibility for Surgery
Individuals were randomly assigned as ineligible for surgical resection based on
proportions of NSCLC stage I and II (all ages) cases that did not undergo surgery
(where the reason was documented). Surgery was explicitly contraindicated for 5.6%,
and offered but refused in 2.1% of cases. (Estimated from public release files using
SEER*Stat 4.2.3 software.) We allow a small proportion (base case 13%, SEER-
Medicare) of LS to be resected, reflecting the minority of cases which present with
localized SCLC.

Resection
Effectiveness of resection is incorporated as follows: a person with no occult metastases
whose single primary cancer is resected is assigned competing risks consistent with a
person of the same smoking history – not stage I survival from SEER. However, if a
second, undetected primary tumor remains (in a non-resected lobe), lung cancer can
recur (see Natural History Component). The presence of undetected micro metastases
is likely the cause of the poor observed survival after “curative” resection in many

patients.1 Removal of (or sampling from) nodes at resection can result in re-assigning

stage at diagnosis, but provides no survival benefit.2 The base case operative mortality

rate for lobectomy is estimated at 4%3 (value in sensitivity analysis, 3%). No increase in
mortality due to late (post-30 day) effects of surgery (e.g., infection) was modeled.

Systemic Therapies
Parameter values that define efficacies of chemotherapy and radiotherapy are the
probabilities of complete or partial response, using the definition of complete as no
visible cancer at 4 week follow-up and partial as greater than or equal to a 30%

decrease in diameter.4 Probabilities of complete and partial responses vary by
histologic type, with estimates taken from the literature. A cancer that partially
responds to therapy is decreased in diameter by 30%, and a cancer that completely

responds to therapy is reduced to 1.5mm diameter,4 or below the 2mm detection
threshold assumed for helical CT. Based on the new diameter, an adjusted ‘time since
cancer developed’ is calculated and used to increment growth in all future cycles,
retaining the original growth parameter alpha (Table Growth Parameters). To account
for differences in growth rates of cancers pre- and post-therapy, we included
parameters (estimated during calibration) that allowed faster-growing cancers to be
more or less likely to respond to therapy.

Surveillance
Surveillance for recurrent lung cancer is modeled as helical CT at 6, 12, 24, 36, 48, and

60 months.5
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INCIDENTAL IMAGING COMPONENT
During each cycle spent in the general population, persons may undergo imaging
exams (thoracic CT, or CXR) performed for reasons unrelated to screening for lung
cancer.

We fit generalized linear models to insurance claims data from 1999. Increasing age
predicted higher likelihood of both CT and CXR (p
Imaging results are compared to results of prior imaging exams, if available. Persons
with no detected nodules or exclusively stable nodules return to the general
population. Persons with newly detected nodules undergo follow-up and are managed
according to the size of the largest nodule found. Persons with nodules large enough
for biopsy start the next cycle in the Workup And Staging Component. If the new
nodule is smaller than the threshold diameter, the person begins the following cycle in
the Follow Up Component. A threshold diameter of 8mm was used as a proxy for
clinical practice and is generally in agreement with a low (5%) biopsy rate for 4-9mm

nodules in a recent trial.1

See Parameters Test Performance for details on test characteristics of imaging
examinations.

REFERENCES:
1 Pinsky, P. F., Marcus, P. M., Kramer, B. S., Freedman, M., Nath, H., Kvale, P.,

Reding, D. “Diagnostic procedures after a positive spiral computed
tomography lung carcinoma screen” in Cancer 2005; 103: 1: 157-163
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SYMPTOM DETECTION COMPONENT
Symptom detection can occur via symptoms from the primary cancer or from distant
metastases.

Each month, individuals with distant metastases and/or a primary lung cancer (but not
those with exclusively benign nodules) may develop symptoms that result in lung
cancer detection and begin the following cycle in the Workup And Staging
Component. The probability of symptom detection from primary cancers varies by
location (central cancers have a greater propensity to cause symptoms, given size) and
cell type (NSCLC vs. SCLC) and is a logistic function of the size of the largest cancer.
We assume the minimum diameter for peripheral cancers to cause symptoms is 10mm,
approximately the size at which airways are obstructed. The probability of symptom
detection from metastases is a logistic function of the months since metastases
developed (varied by NSCLC vs. SCLC).

Symptom detection parameters were estimated during calibration (see Calibration
Details). The most relevant calibration targets included the proportion of lung cancers
detected via symptomatic presentation, the stage and type distributions of incident
cancers, and survival by type and stage at diagnosis. The background rate of chest
imaging in the population (Incidental Imaging Component) will also influence the
symptom detection rates.

See also the Assumption Overview.
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BENIGN COMPONENT
The benign component occurs in every cycle of the model, so that benign lesions may
develop throughout life. Benign lesions may also spontaneously resorb (e.g., due to
clearing an infection).

To incorporate the costs and risks of follow-up procedures for benign lesions, the
natural history model allows up to 3 benign lesions (with no regard for histological
type) per person.

Overview

Using a polynomial fit to raw Mayo CT screening trial prevalence data, we estimated
the average number of benign lesions per person, by age. Cumulative incidences of one
or more benign lesions were converted to age-specific annual probabilities of
developing new lesions (ages 35 to 68) and of existing lesions regressing (after age 68).
For simulations of Mayo CT participants, therefore, prevalence of benign nodules was
as observed in the study.

We estimate that 3% of benign nodules exhibit growth, and assign these lesions
doubling times consistent with adenocarcinomas. Non-growing benign lesions are
modeled as appearing fully formed in the previous month, consistent with a range of
biological mechanisms (e.g., pleural effusion, edema, and infection).

Each benign lesion’s location (i.e., specific lobe) was assigned based on a study of
(n=185) nodules from the Mayo Clinic, which stratified by right/left. An indicator for
central/peripheral is randomly assigned. Size (diameter) was derived from the Mayo
Clinic data, expressed as a lognormal distribution (mean = 0.9, variance 0.36).

Assumptions
Solidly calcified lesions are not considered suspicious for lung cancer, and are ignored.

The probability of developing benign lesions is assumed independent of smoking
history; no significant correlations were observed between any of the smoking factors
and numbers of lesions in the Mayo CT data; and to our knowledge, no literature
sources refute this observation.

Extrapolating from Mayo CT study data on prevalence of benign nodules

The base case LCPM incorporates no regional variation in the prevalence of benign
nodules. Infection with histoplasmosis is a common cause of small (less than 3mm

diameter) benign nodules.1 Histoplasmosis rates vary geographically, with nearly

100% prevalence in persons residing in the major river valleys of the central U.S.1 The
Mayo Clinic (Rochester, MN) is not in an area of the highest histoplasmosis rates.

REFERENCES:
1 Gurney, J., Dewey, J. “Pulmonary histoplasmosis” in Radiology 1996; 199: : 297-306
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TABLE GROWTH PARAMETERS
Natural History Parameters
Distribution of alpha parameters (rate of decay of growth rate) used in the Gompertz
equation for lung cancer growth, and doubling times (in days) for lung cancers at
various sizes (cm diameter), by cell type.

Cell type Distribution of
alpha parameter

Mean (SD) DT
at 0.5cm

Mean (SD) DT
at 1.0cm

Mean (SD) DT
at 1.5cm

Adenocarcinoma/BAC logN(-7.765, 0.5504) 187(160) 227(194) 260(222)

Large cell logN(-6.59942, 0.68862) 61(61) 74(74) 85(85)

Small cell logN(-5.44357, 0.611485) 19(16) 23(20) 26(23)

Squamous cell logN(-6.6111, 0.7935) 65(72) 79(87) 90(100)

Other logN(-6.714, 0.6634) 67(66) 81(80) 93(92)

Notes: 'Other' refers to NSCLC not otherwise specified.

COMMENTS

The alpha parameters above are inputs for the LCPM. Thus the DTs shown are for all
lung cancers at the specified size (both diagnosed and undiagnosed) and are not stratified
by smoking history or stage.

See Parameters Natural History and Natural History Component for details.
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PROTECTED HEALTH INFORMATION
The LCPM study’s protocols for use of human subject data underwent expedited
review (secondary use of medical records) and was approved by the human subjects
institutional review board as compliant with HIPAA guidelines.

De-identified records (including demographics, smoking histories, and screen results)
from two studies were provided to our institution for model calibration and validation.

• 1,520 current and former smokers aged 50-85 years participating in a Mayo Clinic

study of annual CT screening for early detection of lung cancer1. Participants
signed informed consent waivers approved by the Mayo Clinic institutional
review board before enrollment in the screening study. Transfer of the de-
identified data was approved by both institutions’ human subjects review boards
and was exempt from further informed consent requirements.

• 3,318 current and former smokers aged 55-74 years participating in the Lung
Screening Study (LSS, a pilot study for the National Lung Screening Trial) of

annual CT or CXR screening for early detection of lung cancer2. Transfer of the de-
identified data was exempt from further informed consent requirements.

REFERENCES:
1 Swensen, S., Jett, J., et al. “Screening for lung cancer with low-dose spiral computed

tomography” in American Journal of Respiratory and Critical Care Medicine
2002; 165: : 508-513

2 Gohagan, J., Marcus, P., Fagerstrom, R., Pinsky, P., Kramer, B., Prorok, P., Writing
Committee, Lung Screening Study Research Group “Baseline findings of a
randomized feasibility trial of lung cancer screening with spiral CT scan vs
chest radiograph: the Lung Screening Study of the National Cancer Institute” in
Chest 2004; 126: 1: 114-21
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CALIBRATION SURVIVAL1
CALIBRATION ENDPOINTS - SURVIVAL CURVES FOR NSCLC AND
SCLC
Notes: Our use of published estimates for response rates from systemic therapies and
our assumption that all patients underwent guideline staging and treatment may be
irreconcilable with observed survival used for calibration targets, because many
patients represented in SEER did not receive guideline treatments. Defining survival
calibration targets that vary by treatment as well as stage, or by finer gradations of
stage (i.e., T1N0M0 vs. T1N1M0) would address this limitation (ongoing work).
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CALIBRATION INCIDENCE1
LUNG CANCER INCIDENCE FROM THE SINGLE COHORT LCPM VS.
SEER

Age- (in single years), gender-, race-, and calendar year-specific lung cancer incidence
rates, derived from SEER*Stat case listing files and counts of populations at risk from
the NCI. Shown are incidence rates of all lung cancer types combined, for cohorts of
whites.
Shaded regions are acceptance windows (95% CIs) around SEER calibration targets;
crosses indicate LCPM output.

The Population LCPM (see Summary Of Versions for differences between the
Population and single cohort LCPM models) was calibrated to the same reference
cohort (60 year-old males).

Calibration USMortality documents calibration of period and cohort terms for the
Population LCPM.
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CALIBRATION SIZE TYPE STAGE1
SIZE, TYPE, AND STAGE DISTRIBUTIONS OF INCIDENT CANCERS;
LCPM VS. SEER

The LCPM predicted a mean size of incident cancers of 29mm, vs. 38mm in SEER.

Calibration to type distribution of incident lung cancers, white males 60-70 years;
1990-2000.
Derived from SEER-Stat case listing files, stratified by gender, race, calendar decade,
and 10-year age group.

Calibration to stage distribution of incident lung cancers, white males 60-70 years;
1990-2000.
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NB stratified by NSCLC and SCLC. Derived from a weighted average of 3 studies (all
genders, all races) and SEER data (stratified by gender, race, decade, and age group).

MGHITA
Calibration Size Type Stage1

Size, Type, and Stage Distributions of
Incident Cancers; LCPM vs. SEER
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CALIBRATION USMORTALITY1
Calibration plots from the Population LCPM.

Age-adjusted lung cancer mortality rates over the period 1975 to 2000. Model output
vs. observed. All Races, Males

Age-adjusted lung cancer mortality rates over the period 1975 to 2000. Model output
vs. observed. All Races, Females
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VALIDATION LUNG SCREENING
STUDY1

LCPM Populated with Lung Screening Study Population in Presence of Screening

Endpoint Study result2 LCPM

participants with: positive baseline CT screen 20.5% 20.9%

lung cancer at baseline CT screen 1.9% (95% CI, 1.2%,

2.6)

1.2%

prevalent lung cancers that were: adenocarcinoma 63% (n=16/30) 73.7%

small cell 3% 3.1%

NSCLC, NOS 10% 6.0%

prevalent lung cancers that were: stage I 53% (n=16/30) 67.1%

stage II 10% 8.0%

stage III 20% 18.6%

stage IV 10% 6.3%

unstaged 7% n/a

diameter of prevalent lung

cancers:

median (mean, SD) 18mm (27, 23) 10mm (14.6,

8.4)

patients with prevalent lung

cancers:

mean cigarettes/day (SD) 27.7 (9.3) 32.4

mean years of smoking (SD) 47.3 (4.8) 50.3

proportion male 0.57 0.58

participants with lung cancer detected at

screen #2

0.57% (n=8/1398) 0.29%

Notes: LCPM-predicted endpoints calculated from 250,000 simulated participants.
Endpoints not provided in references were calculated directly from study data (see
Protected Health Information). CI = confidence interval; SD = standard deviation;
positive CT screen defined as detection of at least one non-solidly calcified pulmonary
nodule at least 4mm in diameter. Retrospectively identified nodules not included in
prevalence estimate. Adenocarcinoma includes bronchioloalveolar carcinoma (BAC)
and mixed adenocarcinoma/BAC.

REFERENCES:
1 Gohagan, J., Marcus, P., Fagerstrom, R., Pinsky, P., Kramer, B., Prorok, P., Writing

Committee, Lung Screening Study Research Group “Baseline findings of a
randomized feasibility trial of lung cancer screening with spiral CT scan vs
chest radiograph: the Lung Screening Study of the National Cancer Institute” in
Chest 2004; 126: 1: 114-21

2 Gohagan, J. K., Marcus, P. M., Fagerstrom, R. M., et al., “Final results of the Lung
Screening Study, a randomized feasibility study of spiral CT versus chest X-ray
screening for lung cancer” in Lung Cancer 2005; 47: 1: 9-15
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CALIBRATION METHODS RESEARCH
This note is for readers of "Calibration of Disease Simulation Model Using an Engineering
Approach",
Value in Health, Early View, February 2009
Chung Yin Kong, Pamela M. Mc Mahon, G. Scott Gazelle

Kong, et al. compare approaches for calibration of the LCPM using an earlier model
version that included only 4 lung cancer cell types. Since completion of the work
described in this article, we have added a 5th cell type ('Other', represented by ICD-O-2
code 80103) to both the Natural History Component and the calibration targets for age-
specific incidence lung cancer incidence.

ABSTRACT
Objectives: Calibrating a disease simulation model’s outputs to existing clinical data is
vital to generate confidence in the model’s predictive ability. Calibration involves two
challenges: 1) defining a total goodness-of-fit score for multiple targets if simultaneous
fitting is required; and 2) searching for the optimal parameter set that minimizes the
total goodness-of-fit score (i.e., yields the best fit). To address these two prominent
challenges, we have applied an engineering approach to calibrate a microsimulation
model, the Lung Cancer Policy Model (LCPM).
Methods: First, eleven targets derived from clinical and epidemiological data were
combined into a total goodness-of-fit score by a weighted-sum approach, accounting
for the user-defined relative importance of the calibration targets. Second, two
automated parameter search algorithms, Simulated Annealing (SA) and Genetic
Algorithm (GA), were independently applied to a simultaneous search of 28 natural
history parameters to minimize the total goodness-of-fit score. Algorithm performance
metrics were defined for speed and model fit.
Results: Both search algorithms obtained total goodness-of-fit scores below 95 within
1,000 search iterations. Our results show that SA outperformed GA in locating a lower
goodness-of-fit. After calibrating our LCPM, the predicted natural history of lung
cancer was consistent with other mathematical models of lung cancer development.
Conclusion: An engineering-based calibration method was able to simultaneously fit
LCPM output to multiple calibration targets, with the benefits of fast computational
speed and reduced need for human input and its potential bias.
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INDEX SUPPLEMENT CANCER
This document is intended as a guide to this Model Profiler for readers of "Adopting
helical CT screening for lung cancer: Potential health consequences over a fifteen-year
period" Mc Mahon PM, Kong CY, Weinstein MC, Tramontano AC, Cipriano LE,
Johnson BE, Weeks JC, Gazelle GS.

C. 2008 Dec 15;113(12):3440-9.

PMID: 18988293 />

OVERVIEW
A description of the model structure, major components, and purpose is available in
the Model Overview

INPUT PARAMETERS AND SOURCES
Test characteristics and mortality risks are described in Parameters Test Performance

Treatment effects and mortality risks are described in Parameters Treatment

Natural history parameters are described in Parameters Natural History

Smoking histories were derived from survey data as described in the Population
Component

ASSUMPTIONS
The Assumption Overview describes the major assumptions underlying the LCPM and
their possible implications.

Omissions from current LCPM that may influence the estimate of screening
effectiveness:
Harms and benefits from incidental detection of other diseases (e.g., other cancers)
found at screening

Increased lung cancer risks from radiation doses during screening or follow-up CT
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examinations
(Brenner, D.J., Radiation risks potentially associated with low-dose CT screening of
adult smokers for lung cancer. Radiology, 2004. 231(2): p. 440-5)

Tumor seeding of surgical or biopsy site, which is mainly described in case studies (eg
Raja and Bessman, JCO 2003) and is thought to be a rare event

Explicit modeling of late surgical mortality
(Handy JR, Jr., Asaph JW, Skokan L, et al. Chest 2002; 122:21-30 and Toker, et al., Eur J
Cardio-Thoracic Surg 2004;25:515-519)
In these studies, a small minority of ‘late’ (>30 day) post-resection deaths were due to
late surgical mortality (1 infection/16 late deaths in Handy, et al., and 5 late surgical
mortality death/51 total late deaths in Toker, et al.). A higher proportion of late
mortality was due to cancer progression (7/16 in Handy and 16/51 in Toker), which the
LCPM models explicitly as a cause of post-operative death. Other-cause deaths due to
respiratory failure and heart disease are to a large extent captured by the increased
competing mortality risks faced by smokers in the LCPM.

Economic consequences (costs) and influence of screening on quality of life (QALYs)
were not considered in this analysis.

MGHITA
Index Supplement Cancer
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CALIBRATION COHORT STUDY1
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SECONDARY CALIBRATION TARGETS - COHORT STUDY

Two targets were derived from an earlier (1980s) cohort study1 with a highly selected
population (i.e., volunteers with the American Cancer Society or their friends) that

experienced only 70% of the all-cause mortality in the general U.S. population2.

The LCPM predicted annual mortality rates per 100,000 non-smokers and lung cancer-
specific mortality ratios for current (vs. never) smokers (by 5-year age group) that

agree with observed data1.

MGHITA
Calibration Cohort Study1

Secondary Calibration Targets - Cohort
Study
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Monograph 8:” 1997;
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CALIBRATION NON SMOKERS
AUTOPSY1
LUNG CANCER IN NON-SMOKERS

The LCPM predicted a percentage of non-smokers among lung cancer cases of 5.4%, in

the range of reported values of 2% to 15%1,2. As expected, the model predicted a lower
proportion of SCLC cases among non-smokers (4.3%) than among all lung cancer cases

(18%)3.

LUNG CANCER DETECTED AT AUTOPSY

Estimates of rates of undetected (“surprise”) lung cancers at autopsy range from 0.34%

to 55%4,5,6,7,8,9,10,11,12. Furthermore, autopsy techniques varied in unknown ways and
there was no way to correct for potentially large biases due to unreported variability in
age ranges and case mix (especially smoking prevalence and the selection bias inherent

in autopsy series)13. Assuming that all lung cancers >15mm diameter would be
diagnosed on autopsy, the LCPM (in the absence of screening) predicts a 3.6% autopsy
surprise rate, in the reported range.

REFERENCES:
1 Capewell, S., Sankaran, R., et al. “Lung cancer in lifelong non-smokers” in Thorax

1991; 46: : 565-568
2 Beadsmoore, C. J., Screaton, N. J. “Classification, staging and prognosis of lung

cancer” in European Journal of Radiology 2003; 45: 1: 8-17
3 Damber, L., Larsson, L.-G. “Smoking and lung cancer with special regard to type of

smoking and type of cancer. A case-control study in north Sweden.” in British
Journal of Cancer 1986; 53: : 673-681

4 Gobbato, F, Vecchiet, F, Barbierato, D, Melato, M, Manconi, R “Inaccuracy of death
certificate diagnosis in malignancy” in Human Pathology 1982; 13: 11:
1036-1038
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Practice 1986; 181: : 442-447
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reference to findings in Malmö” in Autopsy in Epidemiology and Medical
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YALE UNIVERSITY
Important note: This document will remain archived as a technical appendix for
publications. New versions will be added periodically as model refinements and
updates are completed. The most current version is available at
http://cisnet.cancer.gov/profiles. Note that unlike most PDF documents, the
CISNET model profiles are not suitable for printing as they are not typically
written or read in sequential fashion.

We recommend you let your interests guide you through this document, using the
navigation tree as a general guide to the content available.

The intent of this document is to provide the interested reader with insight into
ongoing research. Model parameters, structure, and results contained herein
should be considered representative but preliminary in nature.

We encourage interested readers to contact the contributors for further
information.

Go directly to the: Reader's Guide.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

FLEXKB DOCUMENT
Version: HI.001.03302011.70021

Document generated: 03/30/2011

All material © Copyright 2003-2011 CISNET

http://cisnet.cancer.gov/profiles


READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

◦ Smoking History Generator Component

◦ Survival Mortality Component

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Key References
A list of references used in the development of the model.
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MODEL PURPOSE

SUMMARY
This document provides a brief overview of the Yale lung cancer model for population
rates. A carcinogenesis model based on a mixture of never, current and former smokers
is used to provide estimates of rates in a specified age and calendar year. In order to
estimate the number of lung cancer deaths that would be expected to occur in a
population with a specified cigarette smoking history, the model also introduces scale
and temporal calibration that includes age, period and cohort effects.

PURPOSE
This population based model provides estimates of trends in lung cancer mortality
rates using quantitative formulae derived from analytical epidemiology studies for the
effect of cigarette smoking.

Our model expands the age-period-cohort (APC) temporal framework in order to
discover the manner in which population trends in factors affecting lung cancer
mortality can affect cancer rates. The model incorporates available population based
data on cigarette smoking in order to quantify its effect on observed trends in lung
cancer mortality and to evaluate the impact of changes in smoking patterns on lung
cancer rates.

The APC framework offers a useful way of conceptualizing temporal trends. Age
represents the effect of the degenerative process on disease risk that takes place over a
lifetime. Period and cohort, on the other hand, are likely to reflect changes in the
exposure to important risk factors or in the disease surveillance system. For lung
cancer, period effects on trend are likely to be factors that affect the entire population
regardless of age, e.g., air pollution, screening, tobacco control, modification in the
manufacture of cigarettes, or artifactual changes in diagnostic technology. On the other
hand, cohort effects would arise from generational changes in behavior, such as
promotional campaigns for cigarette smoking directed at men enlisted during World
War II and women baby boomers seeking equality in gender rights. Including this
temporal calibration factor in the model provides additional detail into how well the
model is able to describe existing trends.

While analytical epidemiologic studies offer the best way to estimate the effect of
putative risk factors on disease risk, quantitative descriptions of the way in which
changes in exposure can affect population rates can be much more challenging. The
purpose of this model is to incorporate temporal trends in cigarette smoking, a known
powerful risk factor for lung cancer incidence, into a quantitative description of the
observed trends in lung cancer mortality rates. The model will then be used to estimate
the effect of interventions designed to change risk factor exposure on disease rates.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

Yale University
Model Purpose

Page 232 of 288 All material © Copyright 2003-2011 CISNET



MODEL OVERVIEW

SUMMARY
This document describes previous work leading to this model and the model itself in
general terms.

PURPOSE
The Yale model extends the age-period-cohort model for lung cancer mortality trends
by including cigarette smoking data for the population. We employ the two-stage
clonal expansion (TSCE) model as fitted by FHLUNG to data from the Health
Professionals Follow-up Study for men and the Nurses' Health Study for women. The
primary objective of this approach is to provide quantitative estimates of the impact of
smoking on the population at large, thus enabling one to estimate the impact of
changes in exposure to this important risk factor on lung cancer mortality rates.
Inclusion of age, period and cohort effects, allows one to determine the extent to which
these temporal trends are explained by a carcinogenesis model using available data on
cigarette consumption, and to determine which temporal factors are not well
characterized. Partitioning the elements of goodness-of-fit into these more readily
understood temporal effects, helps one to identify the limitations of a model. In
addition, it provides an approach for introducing an additional calibration for the
missing temporal effects.

The approach that is described here can be readily extended to include alternative
carcinogenesis models. This will similarly provide an approach for calibrating aspects
of the age, period and cohort effects that are not well characterized by the model, as
well as giving diagnostic detail on how well the carcinogenesis model describes
population trends. Comparing these summaries of goodness-of-fit can suggest models
that agree more closely with observed trends. Reasons for lack of fit can be due either
to limitations of the carcinogenesis model itself, or the quality of the exposure
information for the population.

BACKGROUND
This model uses results from analytical epidemiology studies that quantify the effects
of age, level and duration of smoking, and smoking cessation on lung cancer mortality
rates. This is accomplished by extending the age-period-cohort model to include these
results, and provide further adjustment for limitations that may arise from errors in
survey data or the model that quantifies the relationship between smoking history and
lung cancer mortality risk. This model can be easily modified to incorporate alternative
carcinogenesis models.

For more detail, please see:

1. Descriptive Epidemiology Of Lung Cancer

2. Age-Period-Cohort Models

3. Models For The Effect Of Age On Lung Cancer Incidence

4. Exposure Models For The Effect Of Cigarette Smoking On Population Rates
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MODEL DESCRIPTION
The Yale lung cancer mortality model considers the population to be a mixture of
never, current and former smokers with known prevalences and respectively.
For each of these groups, the TSCE model estimate for lung cancer mortality is
determined as a function of summaries of the smoking history, which are known. An
overall rate is determined by a average of the rates in each smoking category using the
smoking prevalences as weights.

Summaries of smoking history for the population are estimated using cohort
summaries of smoking initiation rates, smoking cessation rates and number of
cigarettes smoked. These fundamental parameters were included in the SHG, which
was run many times to simulate the experience of the overall population. Relevant
average values provided estimates of smoking history summaries required by the
TSCE model.

Calibration is used to correct for discrepancies that result from direct use of the
carcinogenesis model. Let represent temporal elements: age ( ), period ( )
and cohort ( ), respectively. Details on exposure to cigarette smoking history in
the population at a particular time is given by the vector . A carcinogenesis model
provides an estimate of the mortality rate as a function of the population smoking
exposure data, . We calibrate the estimated rates from a carcinogenesis model
by introducing a multiplicative factor

.

CONTRIBUTORS
Theodore R. Holford
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Model Overview
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ASSUMPTION OVERVIEW

SUMMARY
This document discusses assumptions underlying the model as well as some of their
implications.

BACKGROUND
This aggregate model for lung cancer mortality rates assumes that the population
represents a mixture of individuals with different levels of risk that depends on
smoking history. An underlying carcinogenesis model is employed to determine the
effect of cigarette smoking history on lung cancer mortality. In addition, we include a
multiplicative calibration function that depends on age, period and birth cohort that
yields rates that agree well with the observed rates in the population, thus adjusting for
underlying differences in overall health that may exist between individuals in an
analytical study and those in the population as a whole.

The carcinogenesis model uses results from fitting the two stage clonal expansion
(TSCE) model to the Health Professionals Follow-up Study (HPFS) for males and the
Nurses Health Study (NHS) for females, which provides estimates of mortality rates
for a given age of initiation, age of cessation and number of cigarette smoked per day.
Prevalence of never smokers, current smokers and former smokers are estimated using
initiation and cessation rates derived from the National Health Interview Survey. The
survey also provided estimates of number of cigarettes smoked per day for the
population. An overall rate for the population was determined by assuming there was
a mixture of smoking levels using the estimated proportion in a given smoking
category and the corresponding estimated mortality rate.

The age, period and cohort (APC) log linear model for rates provided the framework
for determining the calibration factor that yielded estimated rates that correspond to
those observed in the population. It is well known that an APC model provides an
excellent description of temporal trends in mortality from cancer of the lung and
bronchus. When these temporal elements are included as nominal factors in the
calibration function, a nonparametric form for each component is implied. Thus, an
analysis of the resulting estimate of each temporal component reveals which aspect of
trend has not been adequately characterized when the model and the corresponding
smoking history summaries are used to describe population rates. Correspondingly, by
including the estimated parameters from this into the estimated population rates, we
obtain estimates of rates and number of cases that correspond to the observed values.

ASSUMPTION LISTING

1. The TSCE natural history model developed by the FHLUNG group for lung
cancer was assumed to apply for the population rates. Parameters used in this
component of the model were obtained by fitting to HPFS and NHS data for
males and females respectively. Further details on this model is provided in the
section on Project 2 for the FHLUNG group.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

Yale University
Assumption Overview

Page 235 of 288 All material © Copyright 2003-2011 CISNET



2. A common multiplicative calibration function that applied to all smoking
categories was employed. This was assumed to be a log-linear function of age,
period and cohort, each of which being entered as a nominal variable, resulting
in a nonparametric representation of each temporal factor.

3. The distribution of the number of lung cancer deaths in the US was assumed to
have a Poisson distribution with additional random error that is proportional to
the mean. A quasi-likelihood method of inference was employed. Maximum
likelihood estimates of the temporal calibration factors were obtained using
PROC GENMOD in SAS.

4. Estimates of the distribution of the population in the various smoking categories
were obtained by running the SHG simulator many times. This provided not
only estimates of prevalences among the broad categories of never, current and
former smokers, but the distribution of time quit in former smokers and mean
number of cigarettes per day by quintile of dose.

5. The TSCE model includes a contribution for age, but an additional term was
included in the calibration to allow for limitations in the carcinogenesis model.

6. The period effect in the calibration can not only allow for limitations in the TSCE
model and the available data on smoking history, but other factors that are not
available. For example, cigarette manufacturing changes affecting lethality are
not included in the model. In addition, a period effect could represent data
artifact, which may result from changes in lung cancer mortality definitions or
technology that may not represent changes in risk.

7. The cohort effect in the calibration can allow for corresponding aspects of trend
that are not well characterized by the TSCE model or the corresponding
smoking histories. These may include generational changes in smoking
behavior, for example.
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PARAMETER OVERVIEW

SUMMARY
This document provides an overview of the major parameters in the model, their
sources, and general implications they have on model outputs.

BACKGROUND
The age, period and cohort framework for describing temporal trends in disease rates
has provided a useful approach in the descriptive epidemiology of many cancer sites,
including the lung and bronchus. A model with only these temporal elements assumes
a nonparametric form for each component, thus allowing the form for the relationship
to be revealed in the analysis. However, underlying causes driving trends for each of
these temporal factors depend on biological processes and exposure trends. This model
brings together the classical age-period-cohort (APC) model and a theoretical model
for the effects of age and cigarette smoking on lung cancer mortality. The reasons for
bringing together these two approaches are:

1. It provides a means for evaluating the adequacy of the theoretical model in
explaining the temporal elements of age, period and cohort. An ideal model
would not leave any systematic departure from trend in the temporal elements.
However, if a systematic age calibration is required then this would imply that
that model does not provide a good description of the aging effect on lung
cancer risk.

2. It yields calibrated estimates of rates using the estimated temporal departures
from the carcinogenesis model.

Data required for the implementation of this model are obtained from demographic
and vital statistics summaries, as well as analysis of survey data on exposure of the
population to cigarette smoking. In particular, the model relies on:

1. Population vital statistics

• Estimates for the population at risk were provided by the NCI through the
SEER*Stat software that may be accessed on the web site;

• Number of lung cancer death from 1975-2000 were provided by the NCI and are
generally available on the SEER*Stat web site.

2. Smoking histories
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The observed smoking parameters that arose from a population which experienced
some tobacco control were derived from estimates of smoking initiation and cessation
rates obtain in the NCHS Health Interview Survey. Summaries were provided by five
year birth cohorts, single years of age and gender for smoking initiation rates, quit
rates and mean number of cigarettes smoked by quintile. These parameters were
added to the smoking history generators, which was repeatedly invoked in order to
simulate the experience of a population with the specified characteristics.

PARAMETER LISTING OVERVIEW

1. Smoking history

The observed smoking parameters that arose from a population which experienced
some tobacco control were derived from estimates of smoking initiation and cessation
rates obtain in the NCHS National Health Interview Survey. History summaries
derived from the survey were provided by five year birth cohorts, single years of age
and gender. Specific details available were (a) smoking initiation rates, (b) quit rates
and (c) mean number of cigarettes smoked by quintile. These parameters were added
to the smoking history generator, which was repeatedly invoked in order to simulate
the experience of a population with the specified characteristics.

Similar summaries were generated to represent hypothetical populations in which
there was no tobacco control or complete control following publication of the Surgeon
General’s Report in 1964. The scenarios considered were:

• Actual Tobacco control (ATC)—the observed experience in the US;

• No tobacco control (NTC)—the experience that would have been expected if the
smoking histories observed before 1955 had continued unabated in subsequent
years; and,

• Complete tobacco control (CTC)—all smoking ceased in 1965.

The simulation results from the smoking history generator provided summary
parameters for the model by single years of age and cohort for:

• Never smokers

1. prevalence of individuals who never smoked;

• Current smokers

1. prevalence of current smokers

2. mean age of smoking initiation

3. mean number of cigarettes smoked;

• Former smokers who had quit 1-2, 3-5, 6-10, 11-15 and 16 or more years

1. prevalence of former smoker categories

2. mean age of smoking initiation
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3. mean number of cigarettes smoked

4. mean duration of smoking.

2. Effects on mortality

Moolgavkar et al (Moolgavkar 1979; Moolgavkar 1988; Moolgavkar and Luebeck 1990;
Luebeck and Moolgavkar 2002) proposed a two-stage clonal expansion (TSCE) model
for lung cancer. Estimates of the underlying parameters provided by the FHLUNG
group were obtained by fitting to data from the Health Professionals Follow-up Study
for men and the Nurses Health Study for women. (For details on how these model
parameters were derived, see the FHCRC site.) Our model considers the population to
be a mixture of never, current and former smokers.

3. Population calibration

Temporal and scalar calibration of lung cancer mortality rates derived from the TSCE
model were obtained by finding quasi maximum likelihood estimates of the age,
period and cohort model parameters using (a) data on the population at risk provided
by the NCI through the SEER*Stat software that may be accessed on the web site, and
(b) number of lung cancer deaths from 1975-2000 provided by the NCI.
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COMPONENT OVERVIEW

SUMMARY
The components of this model are described in this section. The first component is
used to describe the smoking history of the population under alternative scenarios.
These are then used as parameters in a carcinogenesis model to determine mortality
rates. The final component aligns model result with those observed in the population
through calibration.

OVERVIEW
The age-period-cohort (APC) model has been used to systematically explore cancer
incidence trends in Connecticut (Roush 1985; Roush 1987). Included in this effort were
several attempts to model lung cancer incidence trends, first by considering separate
dummy variables for the temporal effects (Zheng, Holford et al. 1994) and then
developing more detailed algebraic expressions that considered specific models for the
effects of age, period and cohort (Stevens and Moolgavkar 1979; Stevens and
Moolgavkar 1984; Holford, Zhang et al. 1994; Holford, Zhang et al. 1996). Among the
models used for the effect of age are the multistage or Armitage and Doll model
(Armitage and Doll 1954; Stevens and Moolgavkar 1979) and the two stage clonal
expansion model (Moolgavkar 1979; Moolgavkar 1988; Luebeck and Moolgavkar 2002).
Other aspects of lung cancer trends can include exposure data gleaned from surveys
along with the effect on mortality or incidence derived from relevant cohorts, such as
the British Doctors’ Study (Doll and Hill 1964) and the follow-up of cohorts generated
by the American Cancer Society (Hammond 1966; Knoke, Shanks et al. 2004).

The population is broken into never, current and former smoking categorizes. Because
of heterogeneity of the rates within these categories, they are further subdivided by
level of smoking for current smokers and years quit for former smokers. The TSCE
model used by the FHLUNG Group provided estimates of the rates for each smoking
category and a lengthy simulation using SHG provided estimates of the distribution
within each smoking category. Using the estimated proportions of the population in a
smoking group as weights, the weighted sum of the corresponding rates provided an
estimate of the overall rate for the population. These values are the rates estimated
under the assumption that the population used to generate the model parameters
corresponds to the US population, i.e., the estimated rate.

Calibration of the estimated rates is accomplished by estimating a multiplicative factor
for each rate derived from the TSCE model. This was determined by fitting a Poisson
regression models in which the calibration factor is a log-linear age-period-cohort
model using Poisson regression with the observed number of lung cancer deaths in the
US population as the response. The estimated number of lung cancer deaths was used
to determine the calibrated estimates of lung cancer mortality.

COMPONENT LISTING

1. SHG was used to determine the population distribution for the various smoking
categories.
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2. TSCE model with parameters estimated by fitting to data from the HPFS and
NHS for males and females respectively was used to determine the underlying
lung cancer mortality rates.

3. A weighted sum of the rates estimated for each smoking category provided an
overall estimate of the mortality rate for lung cancer. It was assumed that a log-
linear age-period-cohort model was appropriate and maximum likelihood
estimates of the parameters were found by fitting a model using PROC
GENMOD in SAS.

4. Estimated rates under alternative tobacco control strategies was determined by
first finding the estimated rate using the TSCE model, then multiplying by the
calibration factors obtained under actual scenario.
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SMOKING HISTORY GENERATOR
COMPONENT

SUMMARY
The smoking history generator (SHG) is a shared precursor micro-simulation model
that produces cohort-specific smoking histories and deaths due to causes other than
lung cancer as inputs for the dose-response models used by members of the CISNET
lung cancer consortium.

OVERVIEW
The core SHG software was parameterized using three tobacco control scenarios to
produce the requisite input data for the models. The first, called the actual tobacco
control (ATC) scenario, is a quantitative description of actual smoking behaviors of
males and females born in the United States between 1890 and 1984. The second, called
no tobacco control (NTC), is a quantitative description of predicted smoking behaviors
of males and females in the United States under the assumption that tobacco control
efforts starting mid-century had never been implemented. The third, called complete
tobacco control (CTC), is a quantitative description of predicted smoking behaviors of
males and females in the United States under the assumption that tobacco control
activities yielded perfect compliance, with all cigarette smoking coming to an end in
the mid-sixties. The ATC scenario used inputs derived directly from observed data in
the National Health Interview Surveys (NHIS) and the Substance Abuse and Mental
Health Services Administration (SAMHSA) National Survey on Drug Use and Health.
The NTC scenario used inputs derived by extrapolating from trends in the observed
histories before 1954, i.e., before any tobacco control in the decade leading up to the
publication of the Surgeon General's Report in 1964. The CTC scenario was simulated
by setting cessation rates to one (i.e., transferring all current smokers to former
smokers) and allowing no further initiation starting in 1965 while using the observed
values in earlier years.

DETAIL
The SHG accepts parameters supportive of the three tobacco control scenarios
described above (see Table SGH-I below). The ATC scenario uses initiation, cessation
and smoking intensity (CPD) rates directly derived from the NHIS and SAMHSA
datasets. The NTC scenario uses initiation and cessation rates derived by fitting an age-
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period-cohort model to the ATC rates upto 1954, i.e., before the apperance of any
tobacco control measures, and by projecting those into the future maintaining them
consistent with the patterns observed in 1954. The CTC scenario uses initiation and
cessation rates identical to those of the ATC scenario upto 1965, and then sets the
cessation rates equal to one and the initiation rates equal to zero, i.e., all smokers are
forced to quit in 1965, and no new smokers are allowed to appear thereafter. All
scenarios use smoking dependent other cause mortality (OCD) rates derived from
several sources as mentioned above.

Computational process in the usage of the SHG

The CISNET SHG is implemented in C++ and consists of a single simulation class, that
receives file system paths to five parameter files, four integer pseudorandom number
generator (PRNG) seeds, and an optional immediate smoking cessation year
parameter. The SHG simulation class employs four independent random selection
processes that are implemented via a class-based wrapper of the Mersenne Twister

PRNG.1

Here we briefly describe the outline for computational process in the usage of the SHG:

1. Initialization

a. Load input data

b. Initialize random number streams

3. Start Simulation

a. Validate inputs

b. Determine Initiation Age (if any)

c. Determine Cessation Age (if any)

d. Compute cigarettes smoked per day (CPD) vector for those who initiate

1. Determine smoking intensity group (based on initiation age)

2. Determine CPD based on smoking intensity and age at initiation

3. Determine uptake period and attenuate CPD during uptake period

4. Generate CPD vector from initiation to cessation or simulation cutoff

e. Compute other cause of death (OCD) age

5. Write individual outputs

6. Loop simulation if repeats are specified

Yale University
Smoking History Generator Component

Detail

Page 243 of 288 All material © Copyright 2003-2011 CISNET



RELEVANT PARAMETERS
The SHG utilizes input data from several sources: the NHIS data from 1965 to 2001, the
SAMHSA data, the Berkeley mortality database cohort life-tables, the National Center
for Health Statistics (NCHS), the Cancer Prevention Study I and II (CPS-I and CPS-II),
and the Nutrition follow-up studies sponsored by the American Cancer Society. The
NHIS and the SAMHSA datasets provide estimates for prevalence of never, former (by
years quit) and current smokers by age and year, and data on smoking intensity (in
terms of the average number of cigarettes smoked per day (CPD)). These data were
used to create implicit initiation and cessation rates. Using the average initiation rate,
the SHG is able to determine the likelihood that a never smoker becomes a smoker. For
those individuals that are smokers, the cessation rates are used to determine the
likelihood that a smoker becomes an ex-smoker. The Berkeley life-tables, combined
with smoking prevalence estimates from NHIS and the relative risks of death for
smokers and former smokers in comparison to never smokers from CPS-I and CPS-II,
are used to produce the probability of death from causes other than lung cancer based
on age, sex, birth cohort, and smoking status. Table SHG-I summarizes the input
source for the SHG for the three CISNET tobacco control scenarios.

Table SHG-I

Inpupt ATC NTC CTC

Initiation rates NHIS Derived Derived

(no new smokers after 1965)

Cessation rates NHIS Derived Derived

(all smokers quit in 1965)

CPD1 NHIS,SMAHSA

OCD2 Berkely life-tables, NCHS, NHIS, CPS-I, CPS-III, Nutrition Follow-up studies

Birth year

(1890-1984)

User Defined

Gender

(Male/Female)

User Defined

Race

(All race)

User Defined

1 Cigarettes smoked per day,2Other Cause of Death

ATC: actual tobacco control, NTC: no tobacco control, CTC: complete tobacco control.
To simulate life histories for individuals using the SHG, for any given run, the
following parameters must be provided:
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Table SHG-II

Parameter Valid Values

Seed value for PRNG used for Initiation, Cessation, OCD1, Smoking

intensity quintile

Integer from -1 to 2147483647

(A value of -1 uses the clock time as the

seed)

Race 0 = All Races

Sex 0=Male, 1=Female

Year of Birth Integer from 1890 to 1984

Immediate Cessation year2 0 or Integer from 1910 to 2000

Repeat3 Integer >1 (number of times to repeat

simulation)

File paths to Initiation,Cessation, OCD,

Smoking intensity quintile and CPD4 data files

As derived from NHIS depending on the

scenario

1Other cause of death, 2 This variable is set to 0 except for CTC scenario. To apply immediate smoking

cessation for CTC scenario, the year for immediate cessation must be supplied to the simulator. If the year

value supplied is 0, immediate cessation will not be used in the run. If a year value is supplied, immediate

cessation will occur on January 1st of year provided. 3Key is optional and can be excluded. If the Repeat value

is included and is not a vector value, each set of parameters will be repeated by the amount specified. If the

Repeat value is included and is a vector value, the repeat value will pertain to the value set that it corresponds

to. 4Cigarettes smoked per day.

DEPENDENT OUTPUTS
The inputs of the SHG are used to simulate life histories (up to age 84) for individuals
born in the United States between 1890 and 1984. These life histories include a birth
year, and age at death from causes other than lung cancer, conditioned on smoking
histories. For each simulated individual, the generated life histories include whether
the individual was a smoker or not and, if a smoker, the age at smoking initiation, the
smoking intensity in cigarettes per day (CPD) by age, and the age of smoking
cessation. Smoking relapse, the probability that a former smoker starts smoking again,
is not modeled. Table SHG-III summarizes the output of the SHG. Fig. SHG-1 shows
two examples of smoking histories simulated by the SHG; a) an individual born in 1910
who begins smoking at age 17, quits at age 56 and dies at age 67 due to causes other
than lung cancer, and b) an individual born in 1920 who begins smoking at age 22 and
dies at age 53 due to causes other than lung cancer.

Table SHG-III

Table SHG-III

Initiation Age Age at smoking initiation

Cessation Age Age at smoking cessation

OCD1 Age Age at death from cause other than lung cancer

Smoking

History

Smoking intensity quintile (5 quintiles ranging from light to heavy smoking), Yearly smoking dose

(CPD2)

1Other cause of death, 2Cigarettes smoked per day.
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Figure SHG-1: Examples of the SHG-Generated Events

Simulation results by the SHG can be formatted in four different ways:

1. Text (formatted, human readable text depicting smoking history);

2. Tab Delimited Data (plain text, suitable for post-processing);

3. Annotated text-based timeline (visual representation in text);

4. XML (plain text, suitable for parsing). The outputs from the SHG are made up of
individual life histories, each of which includes the following variables: birth
year, age of smoking initiation, the corresponding smoking intensity (CPD) by
age, age of smoking cessation, and age at death from causes other than lung
cancer, conditioned on smoking histories.

REFERENCES:
1 Matsumoto M., Nishimura T. “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator.” in ACM
Transactions on Modeling and Computer Simulation 1998; 8: 1: 3-30
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SURVIVAL MORTALITY
COMPONENT

SUMMARY
This document describes how mortality rates are modeled.

OVERVIEW
This model regards the population as a mixture of never, current and former smokers
with prevalences , and respectively. The overall lung cancer mortality rate for
population with this mixture of smoking histories is given by

where , and are the corresponding rates for each smoking category.
Other parameters in the model are age (t), mean number of cigarettes smoked ( ), mean
age of smoking initiation ( ), and mean age quit smoking ( ). The rate in former
smokers was broken down further in order to improve accuracy in summarizing the
mixture of smoking durations that were expected to occur in older age groups. The
categories of smoking durations were:

1. 1-2 years

2. 3-5 years

3. 6-10 years

4. 11-15 years

5. 16 years or more

In category , mean dose ( ), mean age of initiation ( ), mean age quit ( ) and
proportion of the population who were former smokers in the category ( ) were
determined, and the overall rate among former smokers was given by

The summary data on smoking history for the population were generated by running
the smoking history generator many times and reporting the mean values for the
parameters of interest (provided by Jihyoun Jeon and Rafael Meza).
The two stage clonal expansion (TSCE) model was employed to quantify the effects of
cigarette smoking on lung cancer mortality rates. In each case, the data from HPFS and
NHS were used to estimate the model parameters for males and females respectively.
Temporal calibration of the model was accomplished by introducing a multiplicative
factor that is a function of age ( ), period ( ) and cohort ( ),

where
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The intercept, , scales the rates so that the estimates from the TSCE model correspond
overall with those observed in the US population. Temporal elements for age ( ),
period ( ) and cohort ( ) provide correspondingly calibrated temporal elements
missed by the carcinogenesis model in describing observed trends for the population
as a whole. If temporal effects are all 0, then the model is in good agreement with the
population. If, on the other hand, these effects are not parallel to the abscissa then that
would indicate inadequacy of the carcinogenesis model in being able to characterize
that particular aspect of temporal trend in population rates. Poor agreement could be
the result of either a limitation in the carcinogenesis model itself or in the population
estimates of exposure to relevant risk factors.

TWO STAGE CLONAL EXPANSION MODEL

Moolgavkar et al (Moolgavkar 1979; Moolgavkar 1988; Moolgavkar and Luebeck 1990;
Luebeck and Moolgavkar 2002) proposed the TSCE model in which the carcinogenesis
process is initiated in a cell that then multiplies to form a clone. A second hit on one of
these initiated cells transform it into a cancer cell that subsequently multiplies further
until it forms a tissue mass that can be clinically identified as cancer. The functional
form for this model is complex and details are provided in the work of Moolgavkar et
al., but it has been found to provide an excellent description of the effect of age on lung
cancer incidence and mortality. Parameters required by the model were estimated
using HPFS for males and NHS for females as described in the section for FHCRC.
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OUTPUT OVERVIEW

SUMMARY
This document describes the output that is generated by the Yale lung cancer mortality
model.

OVERVIEW
The Yale model uses the TSCE model with parameters estimated using data from
HPFS and NHS for the effect of cigarette smoking in males and females respectively. It
can be readily modified to consider alternative carcinogenesis models, but we shall
limit the discussion in this document to the TSCE model. Estimates of the parameters
are described in further detail in by the FHLUNG group.

Parameters estimated for the calibration function are produced, thus providing a
diagnostic summary of the adequacy of the model in describing population rates. The
intercept provides for a scale shift in the estimated rates. A perfect carcinogenesis
model with completely accurate smoking history information would be expected to
produce estimates of age, period and cohort effects that are zero. Effects that are not
parallel to the horizontal axis suggest temporal aspects of the model that not well
characterized. In addition, it provides significance tests for the departure of the
carcinogenesis model from population data, and estimates of the proportion of the
temporal trend explained by the model.

Estimated rates generated by the model provide calibrated estimates of the population
rates. By changing the model parametrization, one can produce alternative calibration
strategies, including a full APC calibration or one that only uses subsets of the
temporal effects. The summaries include not only estimates of the rates, but also
estimated numbers of lung cancer deaths.

Result are provided for the observed smoking experience in the US in which there was
some tobacco control (ATC). We also produce estimates of age-specific rates and
number of lung cancer deaths under scenarios in which there was no tobacco control
(NTC) or complete tobacco control following production of the 1964 Surgeon General's
Report (CTC).

OUTPUT LISTING

1. Diagnostic information about the adequacy with which the model characterizes
population rates:

(a) estimates of age, period and cohort parameters;
(b) significance tests for the calibration parameters; and,
(c) summaries of the amount of temporal variation explained by the model.

2. Summaries of calibrated expected age-specific lung cancer mortality rates (i.e.,
lung cancer mortality hazard) for individuals with a specified smoking history.
Parameters that may be specified are:
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(a) year of birth;
(b) age started smoking;
(c) number of cigarettes smoked per day; and,
(d) age quit smoking.

3. Calibrated age-specific population mortality rates and estimated numbers of
lung cancer deaths for a population with a mixture of smoking risks.
Distributions to be specified include:

(a) age start smoking
(b) number of cigarettes smoked per day; and,
(c) time since quit smoking.

4. Calibrated age-specific population mortality rates and estimated numbers of
lung cancer deaths for a population with a mixture of smoking risks resulting
from a tobacco control strategy. In this case, the manner in which tobacco
control affects the parameters in SHG are specified (initiation rates, quit rates
and cigarettes smoked per day), and these are used to generate the smoking
history distribution specified in 3. The particular scenarios presented in this
analysis are:

(a) actual tobacco control (ATC);
(b) no tobacco control (NTC); and,
(c) complete tobacco control (CTC).
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RESULTS OVERVIEW

SUMMARY
This document provides a summary of selected results obtained in the analysis of US
lung cancer mortality rates in males and females. Three tobacco control strategies were
considered: (a) actual tobacco control experience in the US (ATC); (b) no tobacco
control (NTC); and, (c) complete tobacco control (CTC) following production of the
Surgeon General's Report in 1964.

OVERVIEW
Scenarios

Figure 1(a and b) shows calibrated age-specific mortality rates for specified smoking
history scenarios derived from the TSCE models with parameters estimated from HPFS
males and NHS females. The rates for nonsmokers are considerably lower than the
smokers and they increase with age. Two ages at smoking initiation of 20 cigarettes per
day were considered, 14 and 25. Both age initiation groups were divided into
hypothetical groups who either continued to smoke or quit at age 35. Finally, doses of
10, 20 and 40 cigarettes per day were considered for those who begin smoking at 25
and quit at 35.

Calibration and Validation

An overall summary of the calibration parameters determined by model fitting using
PROC GENMOD in SAS are shown in Table 1. Deviance, , is often interpreted as a
likelihood goodness of fit statistics, but these data suggest the presence of random
error not accounted for by the Poisson distribution that is usually employed for count
data. A model with extra-Poisson variation was employed in this summary, making
use of a quasi-likelihood method. This results in the use of F-tests for the significance of
the individual effects. Linear trends are not estimable, so the resulting summaries only
consider curvature for each temporal effect.
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A comparison of the calibrated age-specific lung cancer mortality rates from this ATC
model with the observed is shown in Figures 2.

A summary of the temporal calibration effects are shown in Figure 3. Figure 3(a) shows
the estimated age effects for men and women using the TSCE model and the model
with no carcinogenesis contribution included, using the constraint of zero slope for
period in order to resolve the identifiability problem for APC models. For ages over 50
the effects are flat, suggesting that the model provides a good summary of age trends
for females, although the declining trend shows the need for a correction that decreases
for the older age groups, i.e., the model tends to overestimate the rates compared to
younger ages. The decline is greater for males. Period effects, shown in Figure 3(b)
employ the same scale as the other temporal effects to allow comparison of magnitude
of calibration, and these are constrained to have zero slopes to achieve a unique set of
estimates. A clear pattern is apparent, but the effects are small. Finally, the estimated
cohort effects using the constraint for period are shown in Figure 3(c). It is important to
recognize that the estimates for the most recent cohorts are determined from as few as
a single rate in the youngest age groups, resulting in considerably less precision. It is
also apparent that the TSCE model that includes smoking history data has explained
much of the existing cohort trend but not all of it, especially for early cohorts.

RESULTS LIST
Table 1. Summary of curvature effects and fit for models giving deviance chi-square tests ( ), F-tests (P

Male Female

Source df G2 F-test1 % explained G2 F-test1 % explained

Smoking Model

Age 53 7511.8 141.73 89.54 7598.9 143.37 73.78

Period 24 577.1 24.05 51.59 494.8 20.61 67.79

Cohort 78 4018.7 24.05 68.15 5808.0 74.46 74.61

Goodness of Fit 1272 1830.0 1554.8

Scale estimate 1272 1.44 1.22

No Model

Age 53 71844.6 1355.56 - 28984.9 546.89 -

Period 24 1192.0 49.67 - 1536.0 64.00 -

Cohort 78 12618.4 161.77 - 22874.4 293.26 -

Goodness of Fit 1272 1710.8 1555.5

Scale estimate 1272 1.35 1.22

1F-tests are used because of extra-Poisson variation with numerator df shown on the row and denominator df given for the

estimate of scale.

Table 2. Estimated number of lung cancer deaths under the Tobacco Control, No Tobacco Control and Complete Tobacco

Control by gender.

Calibration

Approach

Actual
Tobacco Control

No
Tobacco Control

Complete
Tobacco Control

Constant Calibration

Males 2,067,778 2,608,186 1,056,518

Females 1,051,980 1,250,552 480,375

APC Calibration
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Males 2,067,775 2,670,897 958,862

Females 1,051,978 1,273,151 438,857

Figure 1(a). Age trends in male lung cancer rates in the HPFS TSCE model starting age 14 or 25, quitting at 35 or never, and

smoking 10, 20 or 40 cigarettes/day.

Figure 1(b). APC calibrated age trends in female lung cancer rates in the NHS TSCE model starting age 14 or 25, quitting at 35

or never, and smoking 10, 20 or 40 cigarettes/day.
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Figure 2. Observed (dots) and calibrated (APC, PC, AC, and AP) rates (solid lines) for selected age groups by gender.
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Figure 3(a). Age effects for APC calibration and no model by gender.

Figure 3(b). Period effects for APC calibration and no model by gender.
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Figure 3(c). Cohort effects for APC calibration and no model by gender.
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DESCRIPTIVE EPIDEMIOLOGY OF
LUNG CANCER

Systematic study of cancer incidence trends for all of the major cancer sites using data
from the Connecticut Tumor Registry, including lung cancer incidence, has
demonstrated that cohort effects were more likely to be an important influence on the
trends than period (Roush, Holford et al. 1987). This suggests that many cancer trends
are likely to be the result of etiological factors rather than simply an artifact due to
changes in diagnostic practice. These analyses, however, only considered the overall
incidence for a particular site. Recent epidemiological studies indicate that when trying
to understand time trends in disease incidence, it is not always sufficient to consider
cancer of a particular site as a homogeneous entity. Instead, a further breakdown of the
disease by histologic type and/or anatomic subsite may be necessary. For example, a
variety of studies show that cancers with different histologic types arising in the same
organ may show very different incidence patterns; and cancers with the same
histologic type but arising in different organs or different parts of the same organ may
have very similar time trends.(Zheng, Mayne et al. 1993; Zheng, Holford et al. 1994;
Zheng, Holford et al. 1996; Zheng, Holford et al. 1997) These observations are
supported by results from recent analytical epidemiologic studies which show that
exposure to a particular risk factor may be capable of altering an individual's risk of
one particular type of cancer without altering the risk of other forms of cancer at the
same anatomic site; and exposure to a particular risk factor may cause an increased risk
from one particular histologic type of cancer for one organ but reduce risk in the same
type of cancer at another.

Lung cancer is one such example, in that the overall incidence and mortality rates in
the US are reported to be leveling off or declining slightly in recent years, especially in
younger men, which has been attributed to a decreasing smoking rate. Studies that
have explored the incidence trends by histologic type include some clinical series
which report that while the incidence rates for squamous cell carcinoma and small cell
carcinoma have started to decrease, the rates for adenocarcinoma have continued to
increase. This increase is even larger for females. In Connecticut, adenocarcinoma of
the lung has been increasing since the early 1970s while squamous cell carcinoma and
small cell carcinoma have started to level off (Zheng, Holford et al. 1994). We have
found that adenocarcinoma has replaced squamous cell carcinoma as the leading type
of lung cancer since 1991 in Connecticut males. These trends are obscured if only the
overall incidence rates are examined, and the results are important since they raise the
question of whether all types of lung cancer have the identical etiology.

Also see Model Overview
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AGE-PERIOD-COHORT MODELS
Data available for the study of time trends often consist of age-specific incidence rates,
with age and period divided into intervals of equal width. If i(=1,...,I) represents age
groups, j(=1,...J) periods, and k=(1,...,K) cohorts, then a multiplicative model for the rate
in one cell of the table is, , where represents the effect of age on cancer
incidence, and and are period and cohort effects respectively. It is convenient to
express the incidence rate as a log linear model

(1)
where is an intercept term, and , and the corresponding log-linear effects due
to age, period and cohort. This is the classical age-period-cohort model that has been
discussed in considerable detail in the literature (Fienberg and Mason 1978; Holford
1983; Kupper, Janis et al. 1983; Kupper, Janis et al. 1985; Holford 1998). In this form, a
model resembles the analysis of variance, and there are no restrictions on the shape of
the individual parameters. The usual constraints imply that

The linear dependence among age, period, and cohort extends to the indices for the
three time effects, in that . Hence, the design matrix for a linear model that
includes all three factors is not of full rank, and a unique set of parameters for a
generalized linear model including all three factors does not exist. (Fienberg and
Mason 1978; Holford 1983) While not offering a solution to the estimability problem, it
is possible to develop ways of understanding the source of the difficulty so that one
can express estimable components that are easily interpreted. This can be
accomplished by partitioning each temporal effect into two components, the slope or
overall direction of the trend and curvature or deviation from linear trend.(Rogers
1982; Holford 1983) For example, we can represent the age effect by

(2)
where is the underlying slope for the age effect, and are the curvature effects. It
has been shown using a similar partition of the period and cohort effects that the
curvature terms ( , and ) are all estimable, but the slopes ( , and ) are not
(Rogers 1982; Holford 1983). In effect, the slopes are aliased by an indeterminate
constant, , that is hopelessly entangled with all three effects, so that any particular set
of slope estimates (indicated by asterisks) is associated with a true slope by
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(3)
From the rates alone, there is no way to estimate .
The basic APC model is primarily a tool used in descriptive epidemiology to present
and analyze temporal trends in disease rates. As such, it is often used at the first step in
looking for potential risk factors that may be the causal agents driving these trends.
However, this model is employed at a time when there is a consensus as to the primary
cause of lung cancer trends, i.e., cigarette smoking. In addition, epidemiology studies
have quantified the dose response relationship between cigarette smoking and lung
cancer risk, and surveys have provided estimates of exposure trends. Thus we are
employing the APC model to determine the extent to which the observed trends are
explained by this knowledge, and to adjust for residual temporal effect that may result
from model or data limitations.
Also see: Model Overview
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MODELS FOR THE EFFECT OF AGE
ON LUNG CANCER INCIDENCE

Age has a strong effect on lung cancer mortality, and one early observation was the
apparent nearly linear relationship between the log rate and log age. Armitage and
Doll provided a rationale for this relationship by introducing a multistage model for
cancer in which the rate increases as a power of age, where the power corresponds to
the number of stages needed to transform a normal cell to a cancerous cell (Armitage
and Doll 1954). The CPS-I study provide data on nonsmokers, which enabled Knoke et
al (Knoke, Shanks et al.) to estimate parameters in the multistage model for a
population of white U.S. males.

While the multistage model provides a good description of the age trends, biological
research on carcinogenesis has not identified four to six stages that are typically
suggested by fitting this model data. Moolgavkar et al proposed an alternative set of
models in which the carcinogenesis process may be initiated in a cell that then
multiplies, forming a clone. A second hit on one of these initiated cell transform it into
a cancer cell that subsequently develops into clinically identified cancer. While the
functional form for this two stage clonal expansion (TSCE) model is more complex
than the multistage model, the fit to observed data is at least as good, if not better, than
the multistage model. This limited number of two or possibly three stages corresponds
much more closely to what is observed in biological research on cancer, and Hazelton
et al (Hazelton, Clements et al. 2005) provide estimates of the resulting parameters that
arise from this model.

Also see: Model Overview
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EXPOSURE MODELS FOR THE
EFFECT OF CIGARETTE SMOKING
ON POPULATION RATES

One approach for dealing with the identifiability problem in the age-period-cohort
model is to replace temporal factors with information on one or more covariates that
summarize trends in known risk factors for the disease (Stevens and Moolgavkar 1979;
Stevens and Moolgavkar 1984; Brown and Kessler 1987). Underlying this approach
assumes that time represents one or more risk factors that are the real culprits for
disease trends. If one correctly infers the underlying factors causing temporal trends,
then a better analysis would include exposure trends for the factor, rather than using
time as a surrogate measure.

Cigarette smoking is by far the leading cause of lung cancer, so that one has the
advantage of studying the effect of, primarily, just one risk factor (US Public Health
Service 1979; Doll and Peto 1981). The strength of the association between respiratory
cancer mortality rates in the U.S. and the number of cigarettes consumed per capita is
impressive. Kristein (Kristein 1984) reports a correlation of 0.93 for the U.S. data when
a 20-year lag in the amount of smoking is related to respiratory cancer mortality. In
some ways it seems remarkable that the association is so high, because potentially
important details are ignored by such an analysis, including: (a) changes in cigarette
consumption are not uniform over all age groups; (b) these summaries ignore
consumption differences within the population; (c) the effect of smoking on lung
cancer is cumulative; (d) former smokers are at different risk than either current or
nonsmokers; and (e) product changes over time may have modified the effect of a
cigarette.

Previous work that included population exposure to cigarettes was limited by the level
detail that was available in data. Brown and Kessler analyzed U.S. lung cancer
mortality from 1958-82 in order to forecast the trends through 2025(Brown and Kessler
1987). Brown and Kessler fit a model that only used data on cigarette composition over
time, i.e., a measure of tar exposure, which would be expected to affect primarily the
period parameters. Thus, the model was

where is a measure of the population's tar exposure for the j-th period, allowing for an
appropriate time lag. Stevens and Moolgavkar made use of data from England and
Wales which purported to give population summaries of total cigarette consumption,
thus enabling them to develop a model that expressed the cohort effect as a function of
the number of cigarettes smoked.(Stevens and Moolgavkar 1979; Stevens and
Moolgavkar 1984) This model assumed that the log death rate is a linear function of the
average cumulative number of cigarettes smoked, because the population summary
was limited to aggregate information for the population yielding
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where is the proportion of the population that ever smoked, is the mean
cumulative cigarettes consumed and estimates the relative risk for the association
between smoking one unit and lung cancer risk. In a study of lung cancer incidence in
Connecticut, Holford et al used estimates of trends in smoking prevalence and quit
ratios derived from the Health Interview Surveys conducted by the National Center for
Health Statistics (Holford, Zhang et al. 1996). These models were able to account for
82% of the trends attributable to period and cohort, although the estimates of the
effects of cigarette smoking did not agree well with those obtained from analytical
studies.
Also see: Model Overview
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RICE-MDA (TSCE)
Important note: This document will remain archived as a technical appendix for
publications. New versions will be added periodically as model refinements and
updates are completed. The most current version is available at
http://cisnet.cancer.gov/profiles. Note that unlike most PDF documents, the
CISNET model profiles are not suitable for printing as they are not typically
written or read in sequential fashion.

We recommend you let your interests guide you through this document, using the
navigation tree as a general guide to the content available.

The intent of this document is to provide the interested reader with insight into
ongoing research. Model parameters, structure, and results contained herein
should be considered representative but preliminary in nature.

We encourage interested readers to contact the contributors for further
information.

Go directly to the: Reader's Guide.
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READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

◦ Smoking History Generator Component

◦ Survival Mortality Component

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Key References
A list of references used in the development of the model.
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MODEL PURPOSE

SUMMARY
This document describes the primary purpose of the model.

PURPOSE
The Rice-MD Anderson model was formulated to model lung cancer mortality in a
population in the absence of screening programs. The general objective is to make risk
predictions for individuals based on their unique smoking histories. The Rice-MDA
model is further used to simulate lung cancer mortality in individuals based on their
given smoking histories.

The goal of this project is to use carcinogenesis modeling, specifically the two-stage
clonal expansion (TSCE) model estimate the effects of different risk factors on the
development of lung cancer and use this model to make risk predictions for
individuals. Since the TSCE model is incidence based, it is normally fit to prospective
cohort data. For this study, cohort data is unavailable but case-control data on risk
factor exposure and tabled age-specific mortality rates are available. For the males the
model is fit using least square methods while for females a re-sampling based
maximum likelihood method is used.

The main limitation of this model is that it predicts lung cancer mortality directly
without including incidence or tumor growth or development. Although it can predict
an individuals risk of lung cancer death and can simulate an age at death, it cannot
provide information about the age when the lung cancer was diagnosed, or the
hystology/stage of the lung tumor.
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MODEL OVERVIEW

SUMMARY
This document describes the the underlying Rice-MDA model for use in the prediction
of lung cancer risk and how the model is used to simulate lung cancer mortality in the
U.S. population. Further details about data sources, model fitting and parameter
estimates can be found in the Parameter Overview section.

PURPOSE
The purpose of the Rice-MDA model is to create a model for lung cancer mortality that
is based on individual risk histories. The models are fit to data on risk factors collected
in a case-control study combined with mortality rate data from prospective cohort
studies. These models are then used to simulate lung cancer mortality for use in the
smoking base case project.

BACKGROUND
Lung cancer is the second leading cancer in terms of incidence for both men and
women, second to prostate cancer for men and breast cancer for women. However,
because of its serious health implications, lung cancer is the leading cancer killer for

both men and women worldwide2. Smoking accounts for 90% of lung cancer cases3.
This modeling effort makes use of data from a lung cancer case-control study being
conducted at MD Anderson Cancer Center. Using data on risk factors from this case-
control study, we created a time-to-event risk prediction model.

MODEL DESCRIPTION
A two-stage clonal expansion (TSCE) model is used to predict lung cancer risk in

individuals based on his/her unique smoking history and age. Moolgavkar et al.4

established a two-stage clonal expansion (TSCE) model. This model is depicted as
follows:

The TSCE model assumes that a normal cell (NC) mutates into an initiated cell (IC) in
the first transition, according to a Poisson process with intensity , where denotes
the age. There are normal cells in the tissue at birth or maturity, depending on the
tissue. Then the initiated cell duplicates or dies according to a birth-death process with
parameters , and and forms a clone of initiated cells. Each initiated cell can also
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mutate into a malignant cell (MC) for the second transition according to a Poisson
process with parameter . After some lag-time, this malignant cell is assumed to
develop into a cancerous tumor with probability one. Smoking is related to the
parameters of the TSCE model through the use of response functions. For piece-wise
constant parameters, the exact formulas for the hazard and survival functions of the

TSCE model were derived by Heidenreich in 19975. More details on the assumptions of
the model can be found in Assumption Overview.

The TSCE model is normally fit to prospective cohort data. The fitting routine was
augmented to allow for fitting the model to data that come from an MD Anderson
case-control study. Details on the data sources, model fitting, and parameter estimates
can be found in Parameter Overview.

The resulting TSCE models are then used to simulate lung cancer mortality in the US
population by simulating individuals using the method described in Component
Overview. The smoking history generator is used to simulate individuals with
complete smoking histories and death of any other cause times. These individuals are
then inputted into the model to simulate lung cancer mortality. 50,000 individuals are
simulated per birth cohort 1891-1970. Then the age distribution by calendar year is
adjusted to match the US population using re-weighting.

REFERENCES:
1 Coleman, M.P., Esteve, J., Demieka, P., Arslan, A., Renard, H., “Trends in cancer

incidence and mortality” in International Agency for Research on Cancer 1993;
2 NIH “What you need to know about lung cancer” in Publication No. 07-1553 2007;
3 Alberg, Anthony J., Samet, Jonathan M. “Epidemiology of Lung Cancer” in Chest

2003; 123: 1: 21S-49S
4 Moolgavkar, S.H., Venzon, D.J., “Two-event models for carcinogenesis: Incidence

curves for childhood and adult tumours” in Mathematical Biosciences 1979; 47:
: 55-77

5 Heidenreich, W.F., Jacob, P., Paretzke, H.G., “Exact Solution of the clonal expansion
model and their application to the incidence of solid tumors of atomic bomb
survivors” in Radiat Environ Biophys 1997; 36: : 45-58
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ASSUMPTION OVERVIEW

SUMMARY
A description of the assumptions of involved in the Rice-MDA model are listed in this
document.

ASSUMPTION LISTING
TSCE Model Assumptions: The TSCE model is depicted as follows and involves the
following basic assumptions. More details on the model can be found in Model
Overview.

There are Normal Cells in the tissue at maturity that can mutate into intermediate
cells.

Intermediate Cells can either duplicate, die off, or further mutate into Malignant
Cells.

Once a Malignant Cell arises, cancer will develop after some-lag-time with
probability 1.

Model Calibration Assumptions: More details on data sources and model calibration
can be found in Parameter Overview.

Identifiability
One deficiency of the model is that only of the biological parameters
and are identifiable when fitting to data in the piecewise-constant parameters over
distinct time intervals. This issue is dealt with by setting the background mutations
rates equal to each other, , and assuming a likely number of normal cells such as,

. This approach makes use of the fact that the only the product ( ) appears in
the survival and hazard functions. So, using this assumption will not affect estimates of
incidence rates and risk.
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Lag-time between appearance of the first malignant cell and lung cancer
In order to simplify the model and reduce the number of estimated parameters, a lag
time of zero was assumed between the appearance of the first malignant cell and death

of lung cancer as done in Deng et al1 and Luebeck et al2.This is assumption is

justifiable since the TSCE model is insensitive to lag-time assumptions2, ie the
parameters will adjust based on assumptions about the lag-time. In other words,
overall risk predictions will not be different for models calibrated to the same data but
with different assumed lag-times.

The Resampling based approach that is used to calibrate the model for females
assumes that given the matching stratum from a case-control study, cases and controls
are randomly sampled from the underlying population.

Simulation Based Assumptions: Details about the simulation routine can be found in
Component Overview

The Smoking History generates accurate smoking histories and death of other cause
times for individuals based on the inputs of race, gender, and birth year.

Simulating 50,000 individuals per birth cohort 1891-1970, and then re-weighting then
scaling the population to match the age by calendar year distribution in the U.S.
population can accurately reflect the U.S. population.

REFERENCES:
1 Deng, L., Kimmel, M., Foy, M., Spitz, M., Wei, Q., Gorlova, O. “Estimation of the

effects of smoking and DNA repair capacity on coefficients of a carcinogenesis
model for lung cancer.” in Int J Cancer 2009; 124: 9: 2152-8

2 Luebeck, E. Georg , Moolgavkar, Suresh H. “Multistage carcinogenesis and the
incidence of colorectal cancer. ” in Proc Natl Acad Sci U S A 2002; 99: 23:
15095-100
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PARAMETER OVERVIEW

SUMMARY
This document provides information on the data sources used to build the Rice-MDA
model, as well as, describes how the model was fit.

BACKGROUND
The TSCE model is traditionally fit to prospective cohort data. In our study, case-
control data on risk factors were available. Details on how we fit the model to case-
control data follow.
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Data Sources:
The models are fit to case-control data on risk factors combined with external
incidence/mortality rate data. A case-control study is currently underway in the M.D.
Anderson Cancer Center Department of Epidemiology. In this study, measurements of
DNA repair capacity, as well as data on other risk factors such as smoking are being
recorded. Cases of lung cancer are matched with cancer-free controls on age (within
5yrs), gender, ethnicity, and smoking status. The MD Anderson case-control data
contains information on over 6,000 matched cases and controls.

A subset of 272 and 919 cases and controls were used to fit the model for males and
females respectively.

Since the TSCE model is an incidence-based model, data on mortality or incidence rates
are needed. For males, tabled age-specific mortality rate data by smoking intensity and
duration from the CPS-II study were used. This tabled data can be found in Smoking

and Tobacco Monograph 81. For females, tabled age-specific (5yr age bins) incidence
by gender, race and smoking status (current, former, and never) from the Nurses
Health Study were used. Data from the case-control study and the LC rates from the
cohort studies were combined to fit the models.

PARAMETER LISTING OVERVIEW
Details on the underlying TSCE model can be found in Model Overview.

MODEL FITTING
For males and females the TSCE models were fit in 2 different ways. For males, the
TSCE model was fit using a Least Squares method while for females a re-sampling
based methodology is used.
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Males
A complete description of the model for males can be found in Deng et al 2009. In this
model information on not only smoking but also DNA repair capacity as measured in
biological assays were included as risk factors. Optimal and Suboptimal DRC were
defined as 1 or ½ determined by the cutoff of the median DRC level measured amongst
controls. To remove this effect DRC was defined as ¾ for all individuals in this model.

For this model, a least squares approach was used based on the following objective
function using the MD Anderson case-control data supplemented by tabled age-
specific (5 yr bins) lung cancer mortality stratified by smoking status and duration. The
objective function is the combination of 2 components. The first is a chi-square statistic
comparing the model-predicted death counts to CPS-II observed death counts. The
second is a similar chi-square type of statistic comparing model predicted death counts
in the optimal DRC group with the model-predicted death counts in the suboptimal
DRC group, multiplied by the estimated relative risk of lung cancer in the optimal
DRC group which was based on the MD case-control data. The objective function and
assumptions follow.

number of subjects in the th age group at enrollment to CPS-II
duration of the study (6 years) median age of the th age group at
enrollment to CPS-II and is the number of age groups for a given smoking intensity
(20 or 40 cigarettes per day).

The probability concerns the CPS-II population. In the
computation to approximate this probability, a mix of optimal and suboptimal DRC
groups with equal weight was used. Furthermore,

where,

is an estimate of the relative risk of developing lung cancer given optimal DRC
when compared with suboptimal DRC, assuming equal frequencies of individuals with
optimal and suboptimal DRC in the population. is estimated as the ration of the
number of patients with optimal DRC to the number of patients with suboptimal DRC
in the case-control study within the corresponding smoking status group.

For more details please refer to Deng et al.2. After removing the DRC effect the
following are fitted response functions relating smoking intensity measured in
cigarettes per day ( ) to the parameters of the TSCE model.

Never smokers

Smokers while not smoking
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Smokers when smoking

Females
For females, the MD Anderson case-control data on smoking histories was
supplemented with incidence rate data from Nurses Health Study. In order to adjust
for the fact that the MD Anderson cases and controls are matched by both age (within 5
years) and smoking status (current, former, and never smokers), data on age-specific
incidence by smoking status are needed to adjust for the biases introduced by
matching.
The TSCE model is usually fit to prospective cohort data using maximum likelihood.
The cohort likelihood is defined as the product of the individual likelihoods,

Each depends on the time of entry into the study, , censoring or failure time, ,
and the individual’s exposure history.

In order to fit the TSCE model to case-control data a new method was developed to
reconstruct cohort data using the combination of case-control data and tabled
incidence/mortality data using re-sampling. The goal of the method is to re-sample
case-control cases and controls in proportions reflected in the mortality data to recreate
cohort data. Each re-sampled cohort is referred to as a pseudo-cohort and is created by
simulating individuals. Each individual is sampled as follows:

1. Smoking status (current, former, or never) is sampled using the rates from NHIS
for the year 2000.

2. Randomly sample which 5-year age bin the individual belongs to by sampling
based on the number of individuals in each age bin of the controls, with that
smoking status, in the case-control study.

3. Using the corresponding incidence table for the smoking status, in the age bin
generated above, randomly sample whether the individual has cancer or not
based on the estimated probability of an individual with the sampled smoking
status within the sampled age bin getting cancer within the 5 years spanning the
age bin.

4. Once we have a smoking status, age bin, and cancer status we then sample an
individual from the MD Anderson dataset with the same characteristics.
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5. The censoring or failure time of the individual is assigned as their age from the
MD Anderson dataset and the age at entry is assigned as 5 years prior for
individuals who do not develop cancer and at a randomly distributed age in the
previous 5 years for those who develop cancer.

Ages of enrollment and exit were assigned this way because the cancer status was
sampled from the probability of getting cancer over a 5-year interval. If the individual
does get cancer during the interval the timing is sampled as uniform over the interval.

10,000 individuals are re-sampled from the case-control dataset for each pseudo-cohort
created. Then each pseudo-cohort is fit to the TSCE model by maximizing the cohort
likelihood in the usual way. 200 pseudo-cohorts are created and fitted. This provides
200 joint estimates of the parameters for each simulated case-control study. The overall
fit is assumed to be the mean estimates over the 200 runs. The following are the fitted
response functions relating the parameters of the TSCE model to smoking intensity
measured in packs per day ( = ).

REFERENCES:
1 Thun, M.J., Myers, D.G., Day-Lally, C., Myers, D., Calle, E.E., et al. “Trends in

tobacco smoking and mortality from cigarette use in Cancer Prevention Studies
I (1959 through 1965) and II (1982 through 1988).” in National Cancer Institute,
Smoking and Tobacco Control 1997;

2 Deng, L., Kimmel, M., Foy, M., Spitz, M., Wei, Q., Gorlova, O. “Estimation of the
effects of smoking and DNA repair capacity on coefficients of a carcinogenesis
model for lung cancer.” in Int J Cancer 2009; 124: 9: 2152-8
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COMPONENT OVERVIEW

SUMMARY
This document provides an overview of the components involved in the Rice-MDA
model.

OVERVIEW
The main components of the Rice-MDA model are the model describing lung cancer
mortality in individuals based on smoking history, and the simulation of lung cancer
mortality in the US population using the smoking history generator.

COMPONENT LISTING
Smoking history generator
The smoking history generator is used to simulate individual data on smoking
histories and death of other cause times to feed into the model and produce simulated
LC mortality. The Smoking History Generator uses National Health Interview Survey
data to generate for each individual a smoking history (age at initiation, age at
cessation, and number of cigarettes smoked per day) and age at death from all causes
other than lung cancer, based on the inputs of gender, race and birth year.

TSCE model of lung cancer mortality
The TSCE models described in the Model Overview section are used to calculate risks
of lung cancer death in individuals. Using the smoking history generator, the model is
then used to simulate LC death on the individual basis.

LC mortality Simulation
Using the simulated smoking histories and death of other cause times, the model of
lung cancer mortality is used to simulate LC death as described in the Component
Overview section. 50,000 individuals are simulated per birth cohort (1891-1970). Once a
population is simulated, then the age distribution by year is adjusted, using re-
weighting, to match the US population. Details on the simulation of lung cancer in
individuals is described in the Survival Mortality Component section.
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SMOKING HISTORY GENERATOR
COMPONENT

SUMMARY
The smoking history generator (SHG) is a shared precursor micro-simulation model
that produces cohort-specific smoking histories and deaths due to causes other than
lung cancer as inputs for the dose-response models used by members of the CISNET
lung cancer consortium.

OVERVIEW
The core SHG software was parameterized using three tobacco control scenarios to
produce the requisite input data for the models. The first, called the actual tobacco
control (ATC) scenario, is a quantitative description of actual smoking behaviors of
males and females born in the United States between 1890 and 1984. The second, called
no tobacco control (NTC), is a quantitative description of predicted smoking behaviors
of males and females in the United States under the assumption that tobacco control
efforts starting mid-century had never been implemented. The third, called complete
tobacco control (CTC), is a quantitative description of predicted smoking behaviors of
males and females in the United States under the assumption that tobacco control
activities yielded perfect compliance, with all cigarette smoking coming to an end in
the mid-sixties. The ATC scenario used inputs derived directly from observed data in
the National Health Interview Surveys (NHIS) and the Substance Abuse and Mental
Health Services Administration (SAMHSA) National Survey on Drug Use and Health.
The NTC scenario used inputs derived by extrapolating from trends in the observed
histories before 1954, i.e., before any tobacco control in the decade leading up to the
publication of the Surgeon General's Report in 1964. The CTC scenario was simulated
by setting cessation rates to one (i.e., transferring all current smokers to former
smokers) and allowing no further initiation starting in 1965 while using the observed
values in earlier years.

DETAIL
The SHG accepts parameters supportive of the three tobacco control scenarios
described above (see Table SGH-I below). The ATC scenario uses initiation, cessation
and smoking intensity (CPD) rates directly derived from the NHIS and SAMHSA
datasets. The NTC scenario uses initiation and cessation rates derived by fitting an age-
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period-cohort model to the ATC rates upto 1954, i.e., before the apperance of any
tobacco control measures, and by projecting those into the future maintaining them
consistent with the patterns observed in 1954. The CTC scenario uses initiation and
cessation rates identical to those of the ATC scenario upto 1965, and then sets the
cessation rates equal to one and the initiation rates equal to zero, i.e., all smokers are
forced to quit in 1965, and no new smokers are allowed to appear thereafter. All
scenarios use smoking dependent other cause mortality (OCD) rates derived from
several sources as mentioned above.

Computational process in the usage of the SHG

The CISNET SHG is implemented in C++ and consists of a single simulation class, that
receives file system paths to five parameter files, four integer pseudorandom number
generator (PRNG) seeds, and an optional immediate smoking cessation year
parameter. The SHG simulation class employs four independent random selection
processes that are implemented via a class-based wrapper of the Mersenne Twister

PRNG.1

Here we briefly describe the outline for computational process in the usage of the SHG:

1. Initialization

a. Load input data

b. Initialize random number streams

3. Start Simulation

a. Validate inputs

b. Determine Initiation Age (if any)

c. Determine Cessation Age (if any)

d. Compute cigarettes smoked per day (CPD) vector for those who initiate

1. Determine smoking intensity group (based on initiation age)

2. Determine CPD based on smoking intensity and age at initiation

3. Determine uptake period and attenuate CPD during uptake period

4. Generate CPD vector from initiation to cessation or simulation cutoff

e. Compute other cause of death (OCD) age

5. Write individual outputs

6. Loop simulation if repeats are specified
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RELEVANT PARAMETERS
The SHG utilizes input data from several sources: the NHIS data from 1965 to 2001, the
SAMHSA data, the Berkeley mortality database cohort life-tables, the National Center
for Health Statistics (NCHS), the Cancer Prevention Study I and II (CPS-I and CPS-II),
and the Nutrition follow-up studies sponsored by the American Cancer Society. The
NHIS and the SAMHSA datasets provide estimates for prevalence of never, former (by
years quit) and current smokers by age and year, and data on smoking intensity (in
terms of the average number of cigarettes smoked per day (CPD)). These data were
used to create implicit initiation and cessation rates. Using the average initiation rate,
the SHG is able to determine the likelihood that a never smoker becomes a smoker. For
those individuals that are smokers, the cessation rates are used to determine the
likelihood that a smoker becomes an ex-smoker. The Berkeley life-tables, combined
with smoking prevalence estimates from NHIS and the relative risks of death for
smokers and former smokers in comparison to never smokers from CPS-I and CPS-II,
are used to produce the probability of death from causes other than lung cancer based
on age, sex, birth cohort, and smoking status. Table SHG-I summarizes the input
source for the SHG for the three CISNET tobacco control scenarios.

Table SHG-I

Inpupt ATC NTC CTC

Initiation rates NHIS Derived Derived

(no new smokers after 1965)

Cessation rates NHIS Derived Derived

(all smokers quit in 1965)

CPD1 NHIS,SMAHSA

OCD2 Berkely life-tables, NCHS, NHIS, CPS-I, CPS-III, Nutrition Follow-up studies

Birth year

(1890-1984)

User Defined

Gender

(Male/Female)

User Defined

Race

(All race)

User Defined

1 Cigarettes smoked per day,2Other Cause of Death

ATC: actual tobacco control, NTC: no tobacco control, CTC: complete tobacco control.
To simulate life histories for individuals using the SHG, for any given run, the
following parameters must be provided:
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Table SHG-II

Parameter Valid Values

Seed value for PRNG used for Initiation, Cessation, OCD1, Smoking

intensity quintile

Integer from -1 to 2147483647

(A value of -1 uses the clock time as the

seed)

Race 0 = All Races

Sex 0=Male, 1=Female

Year of Birth Integer from 1890 to 1984

Immediate Cessation year2 0 or Integer from 1910 to 2000

Repeat3 Integer >1 (number of times to repeat

simulation)

File paths to Initiation,Cessation, OCD,

Smoking intensity quintile and CPD4 data files

As derived from NHIS depending on the

scenario

1Other cause of death, 2 This variable is set to 0 except for CTC scenario. To apply immediate smoking

cessation for CTC scenario, the year for immediate cessation must be supplied to the simulator. If the year

value supplied is 0, immediate cessation will not be used in the run. If a year value is supplied, immediate

cessation will occur on January 1st of year provided. 3Key is optional and can be excluded. If the Repeat value

is included and is not a vector value, each set of parameters will be repeated by the amount specified. If the

Repeat value is included and is a vector value, the repeat value will pertain to the value set that it corresponds

to. 4Cigarettes smoked per day.

DEPENDENT OUTPUTS
The inputs of the SHG are used to simulate life histories (up to age 84) for individuals
born in the United States between 1890 and 1984. These life histories include a birth
year, and age at death from causes other than lung cancer, conditioned on smoking
histories. For each simulated individual, the generated life histories include whether
the individual was a smoker or not and, if a smoker, the age at smoking initiation, the
smoking intensity in cigarettes per day (CPD) by age, and the age of smoking
cessation. Smoking relapse, the probability that a former smoker starts smoking again,
is not modeled. Table SHG-III summarizes the output of the SHG. Fig. SHG-1 shows
two examples of smoking histories simulated by the SHG; a) an individual born in 1910
who begins smoking at age 17, quits at age 56 and dies at age 67 due to causes other
than lung cancer, and b) an individual born in 1920 who begins smoking at age 22 and
dies at age 53 due to causes other than lung cancer.

Table SHG-III

Table SHG-III

Initiation Age Age at smoking initiation

Cessation Age Age at smoking cessation

OCD1 Age Age at death from cause other than lung cancer

Smoking

History

Smoking intensity quintile (5 quintiles ranging from light to heavy smoking), Yearly smoking dose

(CPD2)

1Other cause of death, 2Cigarettes smoked per day.
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Figure SHG-1: Examples of the SHG-Generated Events

Simulation results by the SHG can be formatted in four different ways:

1. Text (formatted, human readable text depicting smoking history);

2. Tab Delimited Data (plain text, suitable for post-processing);

3. Annotated text-based timeline (visual representation in text);

4. XML (plain text, suitable for parsing). The outputs from the SHG are made up of
individual life histories, each of which includes the following variables: birth
year, age of smoking initiation, the corresponding smoking intensity (CPD) by
age, age of smoking cessation, and age at death from causes other than lung
cancer, conditioned on smoking histories.

REFERENCES:
1 Matsumoto M., Nishimura T. “Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator.” in ACM
Transactions on Modeling and Computer Simulation 1998; 8: 1: 3-30
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SURVIVAL MORTALITY
COMPONENT

SUMMARY
This document describes how lung cancer mortality is simulated for individuals using
the Rice-MDA model.

OVERVIEW
The model uses smoking histories and age at death of any other cause generated using
the smoking history generator as inputs. If the individual does not die of other causes
by the year 2000 then their age in 2000 is considered their censoring time. Using these
inputs the model then simulates whether the individuals die of lung cancer in their
lifetimes. If they do die of lung cancer then the model produces the age at death of lung
cancer. Individual mortality is simulated as follows:

1. Complete smoking histories and death of other cause or censoring times are
generated using the smoking history generator.

2. The probability an individual will not die of lung cancer by their death of other
cause or censoring time, , is calculated according to the model,

3. Then a uniform(0,1) random variable, , was drawn

4. If then the time of censoring is td and no cancer death occurs in
the person’s lifetime

5. If then lung cancer death occurs during the individual’s lifetime and
occurs at age, t, computed by inverting the survival function, .
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OUTPUT OVERVIEW

SUMMARY
This document describes the output generated by the Rice-MDA model. Details about
the underlying model can be found in Model Overview.

OVERVIEW
Using the TSCE model of lung cancer mortality, predictions can be made about an
individual’s risk of lung cancer death. The model is used to simulate LC mortality in
the US population as described below.

OUTPUT LISTING
For each individual age at LC death is simulated based on the smoking history and
death of other cause time generated from the smoking history generator.

Simulating LC mortality:
The corresponding male and females TSCE models are used to simulate lung cancer
mortality in individuals based on given smoking histories. Simulation of the smoking
base case scenarios followed the path depicted below.

1. The smoking history generator is used to generate smoking histories and death
of other cause ages.

2. Given the smoking history and death of other cause times are inputted into the
model to generate lung cancer mortality.

3. The age distribution for each year of the simulated population is adjusted to
match the US population’s age-distribution by year.

Details about the simulation of lung cancer mortality can be found in the Component
Overview section.

50,000 individuals in each birth cohort 1891-1970 are simulated. Once a complete
population is generated, then the age distribution by year is adjusted to match the US
population.
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RESULTS OVERVIEW

SUMMARY
This document describes the results from the Rice-MDA model in the efforts to
determine the impact of tobacco control policy on the rate of lung cancer mortality in
the US population.

OVERVIEW
There were 2 major components of the Smoking Base Case project for which the Rice-
MDA model was used to produce results. Details on the model can be found in Model
Overview while details about model calibration can be found in Parameter Overview.

First, for the Hypothetical Scenarios the model was used to produce mortality curves
for an individual based on a given hypothetical smoking history. These curves were
generated directly from the model.

Second, the models were used to simulate lung cancer mortality in the US population.
Using individuals generated from the Smoking History Generator as inputs the model
was was used to simmulate whether the individuals died from lung cancer and the age
at death. Fifty thousand individuals were simulated per birth cohort 1891-1970, and the
resulting simulated population was re-weighted to match the age distribution per
calendar year of the U.S. population. Three different scenarios were simulated, Actual,
based on the observes smoking histories, Counterfactual based on smoking histories
reflecting predicted smoking trends if the Surgeon General’s Report of 1965 warning
about the dangers of smoking was not published, and lastly the Complete Tobacco
Control forcing all people to quit smoking in 1965 after the report.
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RESULTS LIST
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Hypothetical Scenarios
The following graphs show the predicted lung cancer mortality rates per 100,000 for
the smoking base case hypothetical smoking histories. All hypothetical smoking
histories are based on a birth year of 1921. For our model however, birth year does not
effect predictions. The predicted mortality rates increase based on the amount and
duration of smoking. For former smokers the predicted lung cancer rate decreases but
always remains elevated compared to never smokers.

Simulation Scenarios
The following graphs show the simulated mortality rates per 100,000 for individuals
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aged 30-84 in the US population for years 1975-2000. Even though the models were not
fully calibrated to the US population, the model still produces reasonable predictions
in the Actual Scenario.Rice-MDA (TSCE)
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