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READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

Output Overview
Definitions and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.
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MODEL PURPOSE

SUMMARY
The MISCAN micro-simulation model is used to analyze the effect of PSA screening on
prostate cancer incidence and mortality. This document summarizes the objectives in
developing a prostate cancer simulation model.

PURPOSE
The MISCAN computer simulation model has been developed for estimating the effect
of cancer screening in a dynamic population, to explain results of cancer screening
trials, to predict and compare the (cost-) effectiveness of different screening policies,
and to monitor the results of population screening programs.

The objective of the prostate cancer model is to quantify the role of PSA screening in
prostate cancer incidence and mortality. The prostate cancer screening model is used to
simulate the results of the Rotterdam section of the ERSPC trial as the incidence and
mortality in the US population. By calibrating the model to the trial data and baseline
incidence, parameters for the natural history have been estimated. Using the MISCAN
model, based on the results of ERSPC Rotterdam, we try to understand the trends in
the US and how they differ from European or Dutch conditions.

The models are used to determine optimal screening ages and test intervals and to
calculate cost-effectiveness of various screening policies, compared with a situation
without screening. Also, the models are used to estimate unobservable processes and
variables (natural history of the disease, the amount of overdiagnosis and lead time) in
the ERSPC trial as well as the US population.
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MODEL OVERVIEW

SUMMARY
This document provides an overview of the modeling effort, and describes the model
in general terms.

PURPOSE
In the Miscan model knowledge on natural history of prostate cancer, screening and
treatment obtained from randomized controlled trials and observational studies are
integrated. In this way Miscan can be helpful in analyzing and explaining results of
cancer screening trials, predicting the (cost-) effectiveness of different screening
policies and predicting the potential of present and new interventions on future
national trends. See also Model Purpose.

BACKGROUND
The MISCAN computer program has been used for building screening models for

cancers of breast, prostate, cervix, colon and lung1234. The MISCAN prostate cancer
model has been used to model trends of prostate cancer incidence and mortality in the
ERSPC-trial Rotterdam, and in the ERSPC-trial Sweden, the Dutch population and in
the US population. With these models it is possible to compare trends of prostate
cancer with and without treatment and screening.
The ERSPC model has been used to predict mean lead times and overdetection rates,

associated with different screening programs15. It has also been used to provide
epidemiological evidence of dedifferentiation as a mechanism of progression in

prostate cancer6.

MODEL DESCRIPTION
MISCAN model is a micro-simulation model. Using the model inputs, independent life
histories are generated including a possible cancer history, the effects of treatment and
the effects of early detection by screening. The MISCAN-prostate model contains four
primary components:

1. Demography component

2. Natural History component

3. Treatment component

4. Screening component

First the demography component simulates a population of individual life histories,
according to the demography parameters. Each individual in the population consists of
a date of birth and age of death.

Subsequently the Natural history component simulates prostate cancer histories for
each individual life history separately. Some individuals will have no prostate cancer
in their life and others will have prostate cancer in their life. Once the individual has
prostate cancer the cancer can progress to different preclinical states. In the preclinical
phase the tumor is asymptomatic, but can be detected by screening. In this definition,
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the preclinical phase does not only depend on biological processes, but also on the state
of medical technology. Eighteen preclinical detectable states are defined in
combinations of clinical T-stage (T1, T2 and T3), Gleason grade (well, moderately, and
poorly differentiated) and metastatic stage (local-regional and distant). From each
preclinical detectable state the cancer can progress to the clinical disease state, which
implies that cancer is diagnosed because of symptoms.

In the third part the treatment component simulates the life history after clinical
diagnosis. Detection with cancer is followed by treatment and possibly prostate cancer
death. Different treatments have their treatment-specific survival of prostate cancer
death.

The screening component super-imposes screening on the life histories in the absence
of screening. Screening tests applied to a person in a preclinical disease state may result
in detection and alter the life history of this individual. We assume that the
consequences of early detection by screening are that a part of the screen-detected men
is cured of prostate cancer and will die from other causes. For the other part of the
screen-detected men early detection does not alter the life history.

See Component Overview for a more elaborated description of these components.

CONTRIBUTORS
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ASSUMPTION OVERVIEW

SUMMARY
The assumptions made for the MISCAN model are described in this section.

BACKGROUND
The MISCAN prostate cancer model can be used to simulate prostate cancer screening
and treatment policies in a dynamic population (see Model Purpose), based on
assumptions on demography, natural history of prostate cancer, treatment and
screening. Most of the assumptions arise from the unobservable part in the screening
and treatment of prostate cancer, the natural history of the disease and the effect of
screening on improvement of survival

ASSUMPTION LISTING
The MISCAN ERSPC and US population model use the following assumptions,
categorized by model component (see Component Overview):

Demography

a. The (country specific) life table is the same for all men in the same birth cohort

b. Death from prostate cancer and death from other causes are independent

c. The life time prostate cancer risk is the same for all men in a the same birth
cohort

Natural history

a. Tumor onset:

Tumors are assumed to initiate with the same age specific initiation rate for all men.

b. Progression of disease:

The tumor starts in the preclinical phase. Progression is defined by a matrix of
transition probabilities between states, and dwelling time distributions for the time
spent in each state. The dwelling times are determined by Weibull distributions.
Transition probabilities and dwelling time distributions are age-dependent. A
correlation between duration in subsequent states is assumed.
In the preclinical phase the cancer can be detected by screening. There are eighteen
preclinical detectable states which are derived from combinations of clinical T-stage
(T1, T2 and T3), Gleason grade (well, moderately, and poorly differentiated) and
metastatic stage (local-regional and distant).

c. Clinical detection:
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From each preclinical detectable state the cancer can progress to the clinical disease
state, which implies that cancer is diagnosed because of symptoms. The progression to
the clinical state is defined by the matrix of transition probabilities between states, and
dwelling time distributions determined by Weibull distributions. To explain a higher
incidence and a more favorable stage distribution in the control arm of the trial
compared to the base population, the population in 1991, it is assumed that in the trial
population (during trial period) prostate cancer was clinically diagnosed earlier than in
the baseline situation in 1991. Specifically, it is assumed that the hazard of being
clinically diagnosed given that you are in the preclinical disease state in the trial
population compared to the baseline situation is larger. This difference can for instance
be attributed to contamination (screening in the control arm) or to changes in clinical
practice leading to earlier diagnosis e.g to the use of PSA testing for symptomatic
disease in a clinical setting.

Treatment
After prostate cancer diagnosis the treatments radical prostatectomy, radiation therapy
and active surveillance can be assigned.

a. Treatment dissemination:

ERSPC model: treatment is modeled as a multinomial logit model with covariates age,
T-stage and Gleason score at diagnosis. The categories of the multinomial model are
radical prostatectomy, radiation therapy and active surveillance. The parameter
estimates are based on data of the ERSPC trial section Rotterdam from the year 2000.
US model: treatment is modeled as a multinomial logit model with covariates age, year
and grade at diagnosis. The categories of the multinomial model are radical
prostatectomy, radiation therapy and active surveillance. The parameter estimates are
based on SEER and Ca PSURE data. Conditional on patient’s characteristics available
at diagnosis and primary therapy hormone therapy is assigned by a logistic model.

b. Survival after treatment:

Baseline survival:
The baseline survival has been estimated from SEER (Surveillance, Epidemiology and
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End Results) data in the pre-PSA era, specifically of cases diagnosed between 1983 and
1986. The survival curves were modeled using Poisson regression with grade, stage,
age and treatment type as explanatory variables. To assign the survival curves in our
model we assumed that Gleason score 7 or less than 7 corresponds to grade well/
moderately differentiated and that Gleason score more than 7 corresponds to grade
poor/undifferentiated.

Treatment effect:
The time of death of prostate cancer is defined by the survival curve of the

corresponding treatment. Bill-Axelson et al.1 showed for men with clinically diagnosed
localized prostate cancer a relative risk of 0.65 for the efficacy of radical prostatectomy
compared to the efficacy of watchful waiting. Considering this result, we assume that
men receiving watchful waiting have the baseline survival and that those men
receiving radical prostatectomy and radiation therapy have a relative risk of 0.65
compared to watchful waiting for local-regional cancers. For distant prostate cancer it
is assumed that treatment has no effect on the survival, implying that irrespective of
the treatment type all men diagnosed with prostate cancer in the distant stage have a
survival generated from the corresponding baseline survival curve.

Screening

a. Attendance to screening:

In the model, men can only be screened when they are still alive at the moment of the
screen and when they have not already been diagnosed with prostate cancer.
ERSPC model: Data of the Rotterdam section of the ERSPC trial have been used to
simulate the age and year specific attendance rate. Also, the attendance to the
screening is dependent on whether or not the person attended the last screening.
US model: For the dissemination of PSA screening, we used the results of Mariotto et

al.2, who retrospectively constructed PSA screening histories in the population by use
of survey data from the 2000 National Health Interview Survey and claims data from
the linked SEER-Medicare database (http://healthservices.cancer.gov/seermedicare/).

b. Sensitivity of the test:

PSA screening and subsequent biopsy are modeled as one single test. The test has a T-
stage-dependent sensitivity. These parameters are estimated using data of the ERSPC
trial Rotterdam and the US population. We do not model digital rectal exam (DRE)
explicitly.

c. Effect on survival because of early detection by screening:

We assume that a part of the screen-detected men is cured from cancer and that for the
other part detection does not alter the life history. The cure rate is estimated by
assuming a mortality reduction of 27% in the ERSPC model after a follow-up of 9 years
for men who were actually screened. The mortality reduction of 27 % was observed in
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the ERSPC-trial3.

Parameter estimation
Model parameters for the natural history component and the test-sensitivity are
estimated as follows: A model is constructed for a specific situation, such as prostate
cancer incidence in the US or both arms of the ERSPC trial Rotterdam. Parameters are
then estimated by numerical minimization of the deviance between observed numbers
of cases and the corresponding numbers predicted by the model. Deviances are
calculated assuming Poisson likelihood for incidence data or a multinomial likelihood
for stage distribution data. For the minimization an adapted version of the simplex

optimization method of Nelder and Mead is used4. Optimization is initiated with small
sample sizes and repeated with larger sample sizes (up to 1 million) when optimization
progress is no longer statistically significant.
ERSPC model: Estimates of natural history parameters and test sensitivities were
obtained using observed detection rates and interval cancer rates and stage
distributions in the ERSPC-trial Rotterdam.
US model: US-specific estimates of test-sensitivities were obtained using observed age-
specific incidence and age-specific stage distribution (local/regional vs distant). For
parameter estimation data of men 50 to 84 years old diagnosed in 1975 to 2000 from the
SEER registry were used.

REFERENCES:
1 Bill-Axelson A, Holmberg L, Filen F, Ruutu M, Garmo H, Busch C, et al. “Radical

prostatectomy versus watchful waiting in localized prostate cancer: the
Scandinavian prostate cancer group-4 randomized trial” in J Natl Cancer Inst
2008; 100: : 1144-1154

2 Mariotto, AB, Etzioni, R, Krapcho, M, Feuer, EJ. “Reconstructing PSA testing
patterns between black and white men in the US from Medicare claims and the
National Health Interview Survey” in Cancer 2007; 109: : 1877-1886

3 Schröder, FH, Hugosson, J, Roobol, MJ, et al “Screening and prostate-cancer
mortality in a randomized European study” in N Engl J Med 2009; 360: :
1320-1328

4 Bazaraa, MS, Sherali, HD, Shetty, CM. “Nonlinear programming: theory and
algorithms” 1993; : 353
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PARAMETER OVERVIEW

SUMMARY
Provides a complete overview of the parameters used to quantify the MISCAN-
Prostate model.

BACKGROUND
The MISCAN-Prostate model consists of for basic components: The demography
component, the natural history component, the treatment component and the
screening component. Each component has its own set of parameters.

PARAMETER LISTING OVERVIEW
Demography Parameters

1. number of birth cohorts

2. proportion of the population in each birth cohort

3. for each birth cohort parameters of its birth table

4. for each birth cohort the parameters of its life table

Natural history Parameters

1. parameters for the age specific distribution of onset of the first screen detectable
state

2. for each birth cohort the life time prostate cancer risk

3. parameters for the duration distribution in each preclinical state

4. parameters for the transition probability in each preclinical state

5. parameters for additional clinical diagnosis

6. correlation between duration in subsequent states

7. parameters for survival after clinical diagnosis by age at diagnosis, year of
diagnosis, grade and stage of disease at diagnosis

Screening Test Parameters

1. parameters for the dissemination of PSA screening by age and year

2. test-sensitivity parameters

3. cure rate parameters defining the benefit because of early detection

Treatment parameters

1. parameters for the dissemination of treatment by age at diagnosis, year of
diagnosis, grade and stage of disease at diagnosis

2. hazard ratios associated with initial treatments i.e. radical prostatectomy,
radiation therapy and radiation therapy combined with hormones
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COMPONENT OVERVIEW

SUMMARY
An overview of the major components in the MISCAN-Prostate model.

OVERVIEW
As described in the Model overview document, the MISCAN-prostate model contains
four primary components: Demography, Natural History, Treatment and Screening.

COMPONENT LISTING
Demography Component
The demography component simulates a population of individual life histories,
according to the demography parameters. The demography parameters are:

1. birth table parameters

2. life table parameters

Each individual in the population consists of a date of birth and age of death. It is
possible to define a dynamic population of all ages, which can be adjusted for different
countries. Also it is possible to define a cohort of people with the same age or age
range.

Natural History Component
The cancer related event history is defined by a sequence of disease states and the ages
at which these states are entered. The life histories are generated by a semi-Markov
process, defined by a matrix of transition probabilities between states, and dwelling
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time distributions for the time spent in each state. The disease history is divided in a
preclinical phase and a clinical phase. The preclinical phase corresponds to the
asymptomatic states, that do not lead to clinical diagnosis, but can be detected by
screening. In this definition, the preclinical phase does not only depend on biological
processes, but also on the state of medical technology. Its parameters have to be
estimated from indirect evidence. In the Miscan prostate cancers model there are
eighteen preclinical detectable states which are derived from combinations of clinical
T-stage (T1, T2 and T3), Gleason grade (well, moderately, and poorly differentiated)
and metastatic stage (local-regional and distant). The progression through these states
is illustrated in Figure 1. From each preclinical detectable state the cancer can progress
to the clinical disease state, which implies that cancer is diagnosed because of
symptoms.

Figure 1: The MISCAN prostate cancer model. Prostate cancer develops from no
prostate cancer via 1 or more screen-detectable preclinical stages to a clinically
diagnosed cancer. There is also a distinction between local en metastatic stage, but for
simplicity not illustrated. Screening is superimposed on the life histories in the absence
of screening. Screening may detect cancers earlier in one of the preclinical screen-
detectable states.
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Screening Component
Screening is super-imposed on the life histories in the absence of screening. Screening
tests applied to a person in a preclinical disease state may result in detection and alter
his life history. A screening test is defined by its stage-specific sensitivity. A screening
policy, is defined by the tests used, attendance rate and screening ages. Screening ages
may be selected at regular intervals, or stochastically, allowing the modeling of both
regular screening as in trials or screening programs and opportunistic screening.
Screen detection may alter the cause of events. We assume that the consequences of
early detection by screening is that a part of the screen-detected men is cured of
prostate cancer and that for the other part detection does not alter the life history.

Treatment Component
The life history after clinical diagnosis is defined by stage-specific survival functions.
Detection with cancer is followed by treatment and a survival of prostate cancer death.
Different treatments can be assigned and the different treatments have their treatment-
specific survival of prostate cancer death.
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OUTPUT OVERVIEW

SUMMARY
This document describes the main outputs of the Miscan microsimulation model.

OUTPUT LISTING
The main outputs of the model are:

1. Projected incidence by age, year, clinical T-stage, Gleason score, metastatic state
and mode of detection.

2. Treatment assignment by age, year, clinical T-stage, Gleason score, metastatic
state and mode of detection.

3. Five-, 10-, 15-, and 20-year survival by age and stage at diagnosis and by
treatment.

4. Mortality by age and year at death and cause of death and by clinical T-stage,
Gleason score, metastatic state and mode of detection.

5. Number of PSA tests performed by age and year and total number of men
screened.

6. Detection rate by age, year and screen round (first screen or subsequent screen).
Detection rate is defined as cancers detected / # of men screened.

7. Overdiagnosis rates by age, year of diagnosis, clinical T-stage, Gleason score. An
individual is overdiagnosed if he is screen detected but would not have been
diagnosed in his lifetime in the absence of screening.

8. Mean lead time. Lead time is defined as the amount of time, in years, between
prostate cancer detection and either clinical diagnosis in the absence of
screening or death by other causes. Lead time is calculated for all screen-
detected cancers and for the screen-detected relevant (non-overdiagnosed) cases
only.

9. Mean sojourn time: Time from disease onset to clinical diagnosis.

10. Total life years of the population and total life years in a particular interval (e.g.
from birth to diagnosis, from diagnosis till death)

All outputs (except for overdiagnosis and lead time) are projected in the presence and
in the absence of screening.
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RESULTS OVERVIEW

SUMMARY
This document lists various results generated by the model.

OVERVIEW
First a model was made for the screen arm and control arm of the European
Randomized Study of Screening for Prostate Cancer (ERSPC) trial section Rotterdam.
This model was adjusted to project the US population, by adjusting some input
parameters and fitting the model to the US incidence and stage distribution. With both
models lead time and overdiagnosis were estimated.

RESULTS LIST
Model ERSPC trial Rotterdam
Model US population
Lead Time
Overdiagnosis
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MODEL ERSPC
Model for ERSPC trial Rotterdam

Summary
This document describes the model made for the European Randomized Study of
Screening for Prostate Cancer (ERSPC) trial.

Overview
A prostate cancer model has been made and validated using the results of the ERSPC
trial Rotterdam and baseline incidence and stage distribution data of the Netherlands.

Methods
Based on the results of the Rotterdam section of the ERSPC trial and baseline incidence
and stage distribution a model was made which could accurately predict the results of

the first two screening rounds12. The trial started in Rotterdam in 1994 and included
21166 men aged 55-74 in the control arm and 21210 men in the screen arm. In the first
years a PSA cut-off of 4 ng / ml was used as an indication for biopsy, later this was
changed to 3 ng / ml. The model was also validated with the baseline incidence in the
Netherlands (1991) and the stage distribution of clinically diagnosed cancers
(1991-1993), of the Rotterdam Cancer Registry.

Results
After fitting the parameters (transition probabilities, dwelling times, test sensitivities),
the model could predict the observed baseline values accurately (Table 1):

Table 1: Baseline incidence in the Netherlands 1991 and stage distribution 1991-1993,
compared with the model predictions.

Incidence per 1000 men years

Age group Observed Model prediction

50-55 0.14 0.16

55-60 0.36 0.46

60-65 1.19 1.13

65-70 2.59 2.45

70-75 4.50 4.49

75-80 6.57 6.68

80-85 7.98 8.33

85+ 8.52 7.71

55-75 (trial population) 1.86 1.91

Stage distribution (%)

Stage Observed Model prediction

Localized 58.03 57.75

Regional 18.81 19.44

Distant 23.15 22.85
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The detection rate in the screen arm per round is compared with the model predictions
(Figure 1)

Figure 1: Detection rate in the screen arm, observed and predicted by the model.
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The stage distribution and Gleason score compared with the model are presented in
Figure 2.

Figure 2A: Stage distribution of baseline (1991) level, in the control arm and in the first
and second round of the trial. Left bar of each pair is the observed value, right bar the
model prediction.

Figure 2B: Gleason score distribution in the control arm and in the first and second
round of the trial. Left bar of each pair is the observed value, right bar the model
prediction.
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Discussion
The model, fitted to the baseline and trial data reproduced the essential characteristics
of the observed data on clinical incidence, detection rates and tumor stage and Gleason
score distributions. However, observed incidence and detection rates in the older age
groups in the trial were significantly lower than predicted by the model. These results
suggest a selection effect in the older age groups (older participants in the trial could be
healthier than average).

Conclusion
The model could acceptably well project the observed baseline incidence and stage
distribution and the results of the first two rounds of the ERSPC trial section
Rotterdam.

REFERENCES:
1 Draisma, G, Boer, R, Otto, SJ, van der Cruijsen, IW, Damhuis, RA, Schröder, FH, de

Koning, HJ. “Lead times and overdetection due to prostate-specific antigen
screening: estimates from the European Randomized Study of Screening for
Prostate Cancer” in J Natl Cancer Inst 2003; 95: : 868-878

2 Draisma, G, Postma, R, Schröder, FH, van der Kwast, TH, de Koning, HJ. “Gleason
score, age and screening: modeling dedifferentiation in prostate cancer” in Int J
Cancer 2006; 119: : 2366-2371
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MODEL US
Summary
This document describes the model made for the US population.

Overview
The model of the ERSPC trial has been modified to a model for the US population.

Methods
The validated MISCAN-model developed for the progression of prostate cancer and
screening in the ERSPC-trial Rotterdam is adjusted for the US situation by adapting the

population and the PSA testing practice1. Also, an estimated extra stage-specific risk of
clinical diagnosis has been added, implying an earlier diagnosis of prostate cancer in
the absence of screening in the United States. The model is calibrated to the SEER 9
incidence from 1985 to 2000, as well as stage distribution data.

Results

REFERENCES:
1 Draisma, G, Etzioni, R, Tsodikov, A, Mariotto, A, Wever, E, Gulati, R, Feuer, E, de

Koning, HJ “Lead time and overdiagnosis in prostate-specific antigen
screening: importance of methods and context” in J Natl Cancer Inst 2009; 101: :
374-383
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LEAD TIME
Lead time

Summary
This document describes the estimates of lead time using the model based on the
ERSPC Rotterdam trial and the model for the US population.

Overview
Lead time, the time that screening advances cancer diagnosis, is estimated with the use
of the validated models for the ERSPC trial and the US population.

Methods
For this study lead time is defined as the amount of time, in years, between prostate
cancer detection and either clinical diagnosis in the absence of screening or death by

other causes12. The model for the ERSPC trial as well as the model for the US
population has been used to estimate lead time. The lead time was calculated for
various screen programs, for all screen detected cancers and for screen-detected
relevant (non-overdiagnosed) cancers only.

Results
The lead time is dependent on the screening program (Table 1).

Table 1. Mean lead time for various screening programs using the ERSPC model.

screen program mean lead time (years)

age all cases relevant cases

single 55 12.3 12.8

60 11.0 11.5

65 9.5 10.0

70 7.7 8.1

75 6.0 6.2

interval every year, 55-67 12.3 13.7

every year, 55-75 11.6 13.4

every 4 years, 55-67 11.2 12.3

every 4 years, 55-75 10.3 11.7

For the US population, the estimated lead times were lower: 6.9 years for all cases and
7.8 years for the relevant cases.

Discussion
The results suggest that regular screening as in the ERSPC trial for prostate cancer may
advance diagnosis by approximately 10 years when assuming 100% attendance.
For screening in the US population, the estimated lead times were lower.

Conclusion
Due to differences in PSA testing between US and the ERSPC trial, there is a small
difference in estimated lead time. However, the lead time is long in comparison with
other cancers.
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OVERDIAGNOSIS
Overdiagnosis

Summary
This document describes the estimates of overdiagnosis using the model based on the
ERSPC Rotterdam trial and the model for the US population.

Overview
Overdiagnosis, the detection by screening of cancers that would not be detected in the
absence of screening, is estimated with the use of the validated models for the ERSPC
trial and the US population.

Methods
For this study overdiagnosis is defined as cancers that would not have been diagnosed

within the person’s life time in the absence of screening12. The model for the ERSPC
trial as well as the model for the US population has been used to estimate
overdiagnosis. In the ERSPC model 100% attendance to screening is assumed.
Overdiagnosis was calculated for various screen programs and expressed as
percentage irrelevant cancers of screen detected cancers.

Results
The amount of overdiagnosis is dependent on the screening program (Table 1).

Table 1. Percentage of overdiagnosis for various screening programs using the ERSPC
model.

screen program age % overdiagnosis

single 55 27

60 38

65 47

70 53

75 56

interval every year, 55-67 50

every year, 55-75 56

every 4 years, 55-67 48

every 4 years, 55-75 54

For the US situation the estimated overdiagnosis is 44%.

Discussion
The introduction of regular PSA screening in the Netherlands would lead to a
substantial increase in prostate cancer incidence. In the model prediction,
approximately half of the screen-detected cancers would not have been diagnosed in
the absence of screening.

Conclusion
Screening is associated with a considerable amount of overdiagnosis.
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FRED HUTCHINSON
CANCER RESEARCH CENTER
(PSAPC)
Important note: This document will be updated periodically. The most current
version is available at http://cisnet.cancer.gov/profiles. Note that unlike most PDF
documents, the CISNET model profiles are not suitable for printing as they are not
typically written or read in sequential fashion.

We recommend you let your interests guide you through this document, using the
navigation tree as a general guide to the content available.

The intent of this document is to provide the interested reader with insight into
ongoing research. Model parameters, structure, and results contained herein
should be considered representative but preliminary in nature.

We encourage interested readers to contact the contributors for further
information.

Go directly to the: Reader's Guide.
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READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Validations Overview A discussion of the major calibration and validation exercises
performed throughout model development.

Key References
A list of references used in the development of the model.
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MODEL PURPOSE

SUMMARY
The PSAPC microsimulation model extends our earlier modeling studies of prostate
cancer natural history, prostate-specific antigen (PSA) screening, and disease-specific
and other-cause mortality in the US population. The extension involves a new
modeling approach and an additional component that models the effects of trends in
primary treatment on disease-specific mortality. This document describes the main
objective of the PSAPC model.

PURPOSE
Our primary objective behind modeling prostate cancer trends is to disentangle the
roles of PSA screening and changes in primary treatment patterns in US prostate
cancer incidence and mortality trends. While both prostate cancer incidence and
mortality rates have continued to fall since the early 1990s, the relative contributions of
screening and treatment to the observed declines remain intensely debated.

Early results of two randomized clinical trials of PSA screening were recently released,
and unfortunately their findings may have only added to the confusion. The Prostate,
Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial in the US found no
difference in the rates of death from prostate cancer in men who underwent annual
PSA screening compared with men who were assigned usual care. The European
Randomized Study of Screening for Prostate Cancer (ERSPC) trial involving eight
European countries found that PSA screening every 4 years (every 2 years in the
Swedish study center) reduced the rate of death from prostate cancer by 20% compared
with men randomized to no screening; an even greater benefit is observed among men
who actually underwent screening. Reconciling the results of these studies will be an
important area of future research.

In contrast, only limited information is available concerning the comparative efficacy of
primary treatments--conservative management, radical prostatectomy, and radiation
therapy with or without androgen deprivation therapy.

In this context, drawing inference about the value of screening versus treatment from
observed trends is very challenging. However, the number of people whose lives are
directly or indirectly affected by prostate cancer screening and/or diagnosis every day
underscores the potential value to be gained from modeling efforts.
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MODEL OVERVIEW

SUMMARY
This document reviews the motivation for developing a new model of prostate cancer
natural history, PSA screening, and treatment practices in the US population. A brief
model description is also included.

BACKGROUND
The original FHCRC CISNET prostate model (PCSIM) provided a direct link between
prostate cancer progression and PSA growth. However, while intuitively reasonable,
the link could not be tested empirically. In addition, the cross-model dependence of its
components and the large number of parameters (over 30) made systematic estimation
intractable. While univariate estimation and informal experimentation provided
important information about prostate cancer progression and helped us to understand
ways to improve our modeling efforts, we recognized the imperative of a more
coherent modeling approach.

The deficiencies of the original FHCRC CISNET motivated an overhaul and the
adoption of a new, simpler, unified, statistically coherent model framework. At its core,
the new PSAPC model continues to exploit a linkage between prostate cancer
progression and PSA growth. In contrast with the original model formulation, this link
can now be examined via formal statistical methods since model parameters that
determine disease natural history explicitly depend on PSA levels. In other words, the
link between progression and PSA growth is now captured through model parameters
instead of representing an inflexible assumption buried deep in the internal model
structure.

MODEL DESCRIPTION
Data from the Prostate Cancer Prevention Trial1 and Prostate, Lung, Colorectal, and

Ovarian Cancer Screening Trial2 inform the model about individual PSA growth rates.
These rates determine individual PSA trajectories and are linked to hazards of cancer
progression events in a simulated population. The hazards of cancer progression
represent a natural history model that accounts for clinical diagnosis, while the PSA
trajectories together with screening dissemination and biopsy patterns account for
screen detections. By comparing the total projected number of new cases to observed
incidence, we simultaneously estimate the natural history parameters linking PSA with
event hazards and calibrate the model to the US population. Once calibrated, we then
systematically remove an intervention (or combination of interventions) and compare
projected mortality in its presence and its absence to quantify its impact on mortality.

CONTRIBUTORS
Ruth Etzioni
Roman Gulati
Lurdes Inoue
Jeffrey Katcher
Bill Hazelton
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ASSUMPTION OVERVIEW

SUMMARY
This document describes the core assumptions of prostate cancer natural history in the
PSAPC model.

BACKGROUND
The main idea behind the PSAPC model is to link PSA growth with prostate cancer
progression. The model is similar to models linking disease progression with tumor
growth, but the PSAPC model replaces tumor volume with an observable biomarker,
namely PSA. The model consists of two main components: longitudinal PSA growth
and transitions between natural history disease states (i.e., healthy, preclinical, clinical,
localized, metastatic). The hazards of transitioning from one state to the next are
dependent on age or PSA growth.

ASSUMPTION LISTING

PSA GROWTH

We assume:

• PSA growth is log-linear in age

• A changepoint occurs at onset

• PSA growth rates are heterogeneous across individuals

More precisely, we assume PSA grows as follows:

where

• indexes subjects

• is PSA at age

• is if is true and otherwise

•

•

•
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Note that represents a truncated normal distribution disallowing
negative PSA growth. Estimated PSA growth rates together with between-individual
truncated normal distributions are illustrated below. These plots are based on

parameters estimated from the control group of the Prostate Cancer Prevention Trial1

and tuned to validate against results of the initial screening round of the Prostate,

Lung, Colorectal, and Ovarian Cancer Screening Trial.2

Figure 1. Log-linear PSA growth with truncated normal slopes and changepoint at
disease onset.

NATURAL AND CLINICAL HISTORY EVENT HAZARDS

DISEASE ONSET

The hazard of prostate cancer onset is proportional to age:

Fred Hutchinson CRC (PSAPC)
Assumption Overview
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A variant of the model allows this hazard to increase exponentially with age.

Figure 2. Hazard of disease onset.

DISEASE METASTASIS

The hazard of transition from localized to metastatic cancer is:

where denotes the individual-specific mean
PSA trajectory.

Figure 3. Hazard of progression to advanced stage.

CLINICAL DIAGNOSIS

The hazard of clinical diagnosis before metastasis is:

Fred Hutchinson CRC (PSAPC)
Assumption Overview

Natural and clinical history event hazards
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and after metastasis is:

This specification allows for a greater chance that an individual with metastatic cancer
will present symptoms and be diagnosed than one with localized disease.

Figure 4. Hazard of clinical diagnosis.

ADDITIONAL VARIANTS OF NATURAL AND CLINICAL HISTORY
EVENT HAZARDS

An extended version of the model incorporates disease grade, categorized as low-
moderate (Gleason score 2-7) versus high (Gleason score 8-10). This version has the
following additional assumptions:

• PSA growth after disease onset differs for cases with high-grade versus low-grade
disease, i.e., the distribution of individual-specific PSA growth rates differs for
high- versus low-grade cases

• Disease grade is determined at onset and does not change over time

• The transition rate from localized to metastatic disease, given PSA level, depends
on grade category. Thus, the hazard of transition from localized to metastatic
cancer for low-grade tumors is:

and for high-grade tumors is:

Fred Hutchinson CRC (PSAPC)
Assumption Overview

Additional variants of natural and clinical
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• The transition rate from preclinical disease to clinical diagnosis given PSA
depends on both grade and stage. Thus, the hazard of clinical diagnosis for low-
grade tumors before metastasis is:

for high-grade tumors before metastasis is:

for low-grade tumors after metastasis is:

and for high-grade tumors after metastasis is:
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PARAMETER OVERVIEW

SUMMARY
This document describes parameters in the PSAPC model.

BACKGROUND
In compiling data for estimating model parameters, our main goal was to obtain data
that reflects the US population. For this reason, PSA growth rate parameters are input

based on data from the PCPT1 and PLCO2, natural and clinical history parameters are
estimated via calibration to SEER incidence data, screening dissemination parameters
are input based on the NHIS-Medicare PSA data, treatment dissemination data are
based on SEER, and biopsy compliance is based on data from the PLCO. All of these
data sources reflect either large, population-based surveys or registries or large,
population-based trials. Since we do not have large trials in the US comparing initial

treatments for prostate cancer, we use data from the Scandinavian trial3 on radical
prostatectomy and selected observational studies to set cause-specific hazard ratios
associated with different initial treatment choices. Finally, we base our estimates of
biopsy accuracy on a review of relevant literature (see Biopsy Compliance And
Accuracy).

PARAMETER LISTING OVERVIEW

PARAMETERS

Parameters in the PSAPC model are listed below. Each set of parameters is identified
either as input (i.e., provided to the model based on external sources or model
assumptions) or fitted (i.e., estimated via calibration to observed prostate cancer
incidence).

• PSA growth parameters (input; based on analysis of longitudinal PSA data from
the PCPT and PLCO)

◦ PSA growth intercept (value at age 35) mean and variance across individuals (
, )

◦ Pre-onset PSA growth slope mean and variance ( , )

◦ Post-onset PSA growth slope mean and variance ( , )

◦ PSA noise or within-individual error ( )

• Natural and clinical history parameters (fitted)

◦ Onset hazard ( )

◦ Metastasis hazard ( )

◦ Pre-metastasis clinical diagnosis hazard ( )

◦ Post-metastasis clinical diagnosis hazard ( )
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• Grade-based model: Additional PSA growth parameters (input)

◦ Post-onset PSA growth slope mean and variance for low-grade cases

◦ Post-onset PSA growth slope mean and variance for high-grade cases

• Grade-based model: Additional parameters (fitted)

◦ Probability a tumor is low grade at onset

◦ Metastasis hazard for low-grade cases

◦ Metastasis hazard for high-grade cases

◦ Pre-metastasis clinical diagnosis hazard for low-grade cases ( )

◦ Pre-metastasis clinical diagnosis hazard for high-grade cases ( )

◦ Post-metastasis clinical diagnosis hazard for low-grade cases ( )

◦ Post-metastasis clinical diagnosis hazard for high-grade cases ( )

• Biopsy parameters (input)

◦ Likelihood of referral to biopsy if PSA is below 4.0 ng/ml

◦ Biopsy compliance rate, i.e., probability a biopsy is performed if referred;
frequencies depend on PSA level and age

◦ Biopsy accuracy rate, i.e., probability that a biopsy will detect a tumor if it is
present; increases across calendar years

◦ Biopsy compliance and accuracy increase to 100% for individuals within years
of transitioning to metastatic disease

• Survival parameters (input)

◦ Hazard of non-prostate cancer death

◦ Baseline prostate cancer survival in the absence of treatment

◦ Hazard ratios associated with initial treatments, i.e., radical prostatectomy,
radiation therapy, and radiation therapy combined with hormones

• Dissemination parameters (input)

◦ Screening dissemination: Annual probability of having a PSA test

◦ Treatment dissemination: Annual probability of initial treatment choice
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COMPONENT OVERVIEW

SUMMARY
This document describes the main components of the PSAPC simulation model in
detail.

OVERVIEW
The general steps in estimating the natural history parameters and calibrating the
model to the US population are as follows.

• A simulated population of individuals is generated to match observed male
population counts by age and year. As a consequence of the generation scheme,
each simulated individual has a date of birth and a date of all-cause death.
Simulated individuals are then randomly assigned PSA growth rates, ages at
natural and clinical history events, ages at which PSA screening occurs, and
screen-specific biopsy compliance and sensitivity indicators.

• Simulated individual natural and clinical history time courses are followed to
determine whether they are screen detected, clinically diagnosed, or neither. In
other words, individuals are aged forward and undergo disease progression and
screening with each event determining future possible event paths (so that, for
example, individuals that are clinically diagnosed do not undergo subsequent
screening). Screened individuals are recommended to biopsy if their PSA exceeds
4.0 ng/ml; biopsy occurs based on a biopsy compliance indicator, and the biopsy
detects cancer in individuals who have had disease onset based on a biopsy
sensitivity indicator. Diagnosed individuals are assigned an initial treatment and,
as a consequence of the treatment assignment, a new age at death due to prostate
cancer is generated. The earlier of the individual's ages at all-cause and cause-
specific death is taken as the true age at death.

• Counts of individuals that are screen detected or clinically diagnosed are then
tallied by age, year, and stage at diagnosis. Similarly, counts of prostate cancer
death and all-cause death are tallied by age and year at death.

• Projected counts are compared with observed incidence counts by age, year, and
stage at diagnosis in a Poisson likelihood. A variant of the Nelder-Mead algorithm

for stochastic maximum likelihood1 is used to estimate model parameters and to
calibrate the model to observed incidence data. To account for Monte Carlo error,
model parameters are re-estimated for multiple random number seeds.

COMPONENT LISTING
POPULATION GENERATION, PSA GROWTH, AND NATURAL/CLINICAL
HISTORY

• Population Generation

• All Cause Mortality

• Psa Growth

• Natural And Clinical History
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PSA AND DRE SCREENING

• Biopsy Compliance And Accuracy

• Dre Detections

CLINICAL PRESENTATION AND SCREEN DETECTION

• Treatment Distributions

• Cause Specific Mortality

• Treatment Efficacy

CLINICAL PRESENTATION AND SCREEN DETECTION

• Model Estimation

REFERENCES:
1 Spall, J “Introduction to stochastic search and optimization: Estimation, simulation,

and control” 2003;
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OUTPUT OVERVIEW

SUMMARY
This document describes the main outputs of the PSAPC microsimulation model.

OVERVIEW
The main outputs of the PSAPC model are as follows:

• Projected incidence by age, year, stage, grade, and mode of detection.

• Overdiagnosis rates by age and year of diagnosis. An individual is overdiagnosed
if he is screen detected but would not have been clinically diagnosed in his
lifetime.

• Mean lead time (time from screen detection to clinical diagnosis). We calculate
three definitions of lead times:

◦ Relevant lead times are calculated only for non-overdiagnosed individuals, i.e.,
individuals for which age at clinical diagnosis precedes age at death.

◦ Censored lead times are calculated for both non-overdiagnosed individuals and
for overdiagnosed individuals, with lead times for overdiagnosed individuals
censored at death from other causes.

◦ Uncensored lead times are calculated for both non-overdiagnosed individuals
and for overdiagnosed individuals. The lead times for overdiagnosed
individuals are not censored at death from other causes.

• Mean sojourn time (time from disease onset to clinical diagnosis) for the three
corresponding definitions.

• Five-, 10-, 15-, and 20-year survival by age and stage at diagnosis for men
diagnosed in 2000.

• Mortality by age and year at death and cause of death. Mortality projected under
basecase settings compared with that under a given intervention (or combination
of interventions) is the main way in which we quantify the intervention's impact.
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RESULTS OVERVIEW

SUMMARY
This document outlines PSAPC results.

RESULTS LIST

• Projected Incidence

• Lead And Sojourn Times

• Over Diagnosis
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BIOPSY COMPLIANCE AND
ACCURACY

BIOPSY COMPLIANCE

Each subject is assigned a profile of discrete uniform random draws that indicate whether he will comply
with referral to biopsy and whether a biopsy is sensitive enough to detect existing cancer at each screen.

Biopsy compliance rates vary by age and PSA level based on PLCO trial data illustrated below.1 Note that
to reflect the use of diagnostic PSA testing for metastatic and symptomatic cases, we force biopsy
compliance to be 100% when an individual is within years of transitioning to metastatic disease.

Figure 7. Biopsy compliance rates by age and PSA level.

BIOPSY SENSITIVITY

Biopsy sensitivity is based on a literature review of how biopsy schemes have changed over the time

period considered.8 Based on these studies we assume:

• Sensitivity increases linearly with the number of cores
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• 6-core sensitivity is 80% sensitive

• 8+ cores are 100% sensitive

• The proportion of 6-core scheme decreases linearly after 1995 in favor of 8+ cores

The middle blue line pictured below reflects average biopsy sensitivity rates. (The other lines represent
alternative sensitivity patterns to be considered when investigating the robustness of model projections.)
As for biopsy compliance, to reflect the use of diagnostic PSA testing for metastatic and symptomatic
cases, we force biopsy sensitivity to be 100% when an individual is within years of transitioning to
metastatic disease.

Figure 8. Biopsy sensitivity rates by calendar year.
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POPULATION GENERATION
POPULATION GENERATION

The target population for drawing inference is SEER 9 men (all races) aged 50-84 in
1975-2000 by single-year age group and calendar year. However, we also model
younger ages (i.e., 20-49) and earlier years (i.e., 1950-1974) in order to improve the
quality of the model calibration to the target population trends.

The population is generated by creating simulated individuals to populate observed
male counts in the observed age-year table one birth year cohort at a time. For each
individual in each cohort, we generate a cohort-specific age at all-cause death derived
from US life tables. While alive, the individual ages along the cohort-specific diagonal
strip of the table contributing to the counts in those cells (birth year 1895 is shown in
the figure below). This generation process is repeated until the count in the first
calendar year matches the observed total. The process continues along the diagonal
with deficits between generated and observed totals filled by new individuals. In
practice, we observe only deficiencies and no surpluses, reflecting net immigration into
the SEER 9 catchment areas.

Figure 5. Generating individuals to match observed population counts.
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In practice, observed counts are partitioned into many (typically 100) subpopulations
that sum to the observed counts. This multi-subpopulation representation allows us to
simulate the full SEER 9 population while constraining the number of simulated
individuals in memory at any point in time.

Figure 6. Partitioning full population into sub-populations.
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ALL CAUSE MORTALITY
ALL-CAUSE MORTALITY

All-cause annual mortality from NCI (based on US life tables from the Berkeley
Mortality Database) for ages - and years - were converted to cohort tables
for birth years - . Birth-year-specific annual hazards ( ) were then converted
to cumulative distribution functions ( ) using the standard relationship:

where . The CDF for year ( ) was then assumed for years
- . To ensure death by age we set .
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PSA GROWTH
PSA GROWTH

Each subject is assigned a profile of normal and truncated normal random draws that
determine his PSA at a reference age, PSA growth rates, and PSA noise at screen and
natural and clinical history events.

PSA growth

One normally distributed random draw is used to generate PSA at age ; this serves as
the intercept for log-linear PSA growth over his lifetime; mean PSA at this age is ng/
ml. A series of normally distributed random draws are used to generate PSA noise at
each screen and at each natural and clinical history event.

Long lists ( ) of truncated normally distributed draws are randomly sampled
and assigned to represent individual-specific PSA growth rates. The means and
variances of these random variates are based on a Bayesian mixed model fit to

longitudinal PSA growth curves from the Prostate Cancer Prevention Trial (PCPT).1

We use PCPT interim case data for individuals with at least PSA tests.

REFERENCES:
1 Inoue, L, Etzioni, R, Morrell, C, Muller, P “Modeling disease progression with

longitudinal markers” in Journal of the American Statistical Association 2008;
103: : 259-70
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NATURAL AND CLINICAL HISTORY
NATURAL AND CLINICAL HISTORY

Each subject is assigned a profile of continuous uniform random draws that determine
ages at natural and clinical history events.

Ages at onset, at transition to metastasis, and at clinical presentation are generated
using random uniform draws evaluated in inverted survivor functions corresponding
to each hazard function (a standard analogue of the well-known inverse CDF method).
For example, to generate age at onset, the survivor function is:

We obtain age at onset for individual by evaluating the inverted survivor function at
random uniform draw :

Given his age at onset, we obtain his PSA at onset using his PSA growth rate
parameters and random noise:

where the are the individual-specific PSA growth rates and is PSA noise at age .
Similarly, to generate his age at metastasis, the survivor function is:

and we obtain an age at metastasis corresponding to random uniform draw as:

Age and PSA at clinical presentation are generated analogously.
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DRE DETECTIONS
DRE DETECTIONS

In one variant of the model, we account for DRE detections by randomly assigning
individuals with negative PSA test results to biopsy. The frequency of referral to
biopsy among men with PSA below 4 is based on a study by Schröder et al (1998)
which found that the sensitivity of DRE is approximately 20% for PSA below 3.0 ng/ml

and 40% for PSA from 3.0 to 3.9 ng/ml.1 Men with a negative PSA who are referred to
biopsy are assumed to comply with a frequency that is similar to that among men with
a moderately elevated PSA (PSA between 4.0 and 7.0 ng/ml).

REFERENCES:
1 Schroder, FH, van der Maas, P, Beemsterboer, P, Kruger, AB, Hoedemaeker, R,

Rietbergen, J, Kranse R “Evaluation of the digital rectal examination as a
screening test for prostate cancer. Rotterdam section of the European
Randomized Study of Screening for Prostate Cancer” in J Natl Cancer Inst 1998;
90: 23: 1817-23
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TREATMENT DISTRIBUTIONS
TREATMENT DISTRIBUTIONS

Empirical distributions for treatment choices conservative management (None), radical
prostatectomy (RP), and radiation therapy (RT) provide the basis for multinomial
random assignment of treatments among individuals diagnosed with local-regional
stage disease by grade at diagnosis (Gleason score 2-7 and Gleason 8-10). Similarly,
empirical proportions of men receiving androgen deprivation therapy (ADT) form the

basis for binomial random assignment by age, year, and grade at diagnosis.1

REFERENCES:
1 Tsodikov, A, Solomon, C “Generalized self-consistency: Multinomial logit model

and Poisson likelihood” in J Stat Plan Inference 2008; 138: 8: 2380-97

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

Fred Hutchinson CRC (PSAPC)
Treatment Distributions

Page 51 of 201 All material © Copyright 2003-2009 CISNET



CAUSE SPECIFIC MORTALITY
CAUSE-SPECIFIC MORTALITY

We used Poisson regression models to estimate survival curves for untreated cases.
Cause-specific SEER 9 actuarial survival data from SEER*Stat for men diagnosed at
ages 50-84 in 1983-1986 were considered as representative of pre-PSA-era survival.
Model covariates included age, treatment decisions (None, RT, or RP), stage (local-
regional or distant), grade (SEER categories I-II, III-IV, or unknown) at diagnosis, and
selected interactions. The models provide reasonable agreement with observed
survival and the projected survival curves for men treated conservatively (i.e., not with

RP or RT) agree closely with the curves of Albertsen et al. (2005).1 These survival
curves are used as the baseline cause-specific survival for untreated cases. This baseline
survival is adjusted using hazard ratios that reflect treatment-specific efficacy for
treated cases.

REFERENCES:
1 Albertsen, PC, Hanley, JA, Fine J “20-year outcomes following conservative

management of clinically localized prostate cancer” in JAMA 2005; 293: 17:
2095-101
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TREATMENT EFFICACY
TREATMENT EFFICACY HAZARD RATIOS

To reflect the benefits of treatment, survival for untreated cases is inflated by hazard
ratios to obtain survival for treated cases. For RP we assume a hazard ratio of 0.56 both

with and without androgen deprivation therapy.1 For RT, we conducted an informal
survey of expert clinicians. We found general agreement that RT+ADT is believed to be
similarly efficacious as RP. RT alone, however, remains worse than RP despite
improvements in the early 1990s.

Based on these results, we fix treatment basecase RT+ADT efficacy at 0.56 and set RT
efficacy at 0.9 before the 1990s and linear decrease to 0.7 by 1995, where it remains to
2000. RT efficacy trends are summarized in the figure below.

Figure 9. Efficacy of radiation therapy with and without androgen deprivation therapy
by calendar year.
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MODEL ESTIMATION

MODEL ESTIMATION

Subjects' PSA trajectories, disease natural histories, and screening experience yield
projected incidence counts by age, year, and stage. Comparing with corresponding
observed counts, we estimate parameters by maximizing the log Poisson likelihood:

where

•

•

•

•

•

•

•

Maximization is performed using the Nelder-Mead algorithm adapted for stochastic

likelihoods1 based on Bhat, a suite of optimization routines generously provided by

Dr. Georg Luebeck.2

Note that observed local-regional and distant stage incidence counts are inflated to
account for cases with unknown stage. Such unstaged cases are allocated to local-
regional or distant stage according to their relative proportions in each age group and
calendar year.

REFERENCES:
1 Spall, J “Introduction to stochastic search and optimization: Estimation, simulation,

and control” 2003;
2 Luebeck, G “Bhat: General likelihood exploration”
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PROJECTED INCIDENCE

SUMMARY
This documents summarizes projected incidence from the basecase PSAPC model.

RESULT TYPE
Target Simulation

OVERVIEW
Incidence projections reflect the successfulness of calibration of the model to the US
population. Our goal is to match as closely as possible observed incidence patterns.

METHODS
Age-adjusted observed and projected incidence trends are presented by stage. Results
are based on averages across 20 random seeds and re-estimated natural and clinical
history parameters.

RESULT

Figure 10. Age-adjusted observed and projected local-regional stage incidence.
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Figure 11. Age-adjusted observed and projected distant stage incidence.

DISCUSSION
Projected incidence matches the general shape of observed incidence rather well. The
model overprojects local-regional stage incidence in the pre-PSA era, and the spike
following early PSA dissemination is less peaked than observed. The model
underprojects distant stage incidence in the late 1980s, then fails to fall as quickly as
observed. Difficulty attaining the observed decline in distant stage incidence has been

experienced in other modeling frameworks as well.1

CONCLUSION
Model projections are imperfect but reasonable considering the simplicity of its
assumptions.

REFERENCES:
1 Etzioni R, Gulati R, Falcon S, Penson DF “Impact of PSA screening on the incidence

of advanced stage prostate cancer in the United States: A surveillance modeling
approach” in Med Decis Making 2008; 28: 3: 323-31
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LEAD AND SOJOURN TIMES

SUMMARY
This documents summarizes projected lead and sojourn time results from the basecase
PSAPC model.

RESULT TYPE
Validation

OVERVIEW
Lead time represents an important measure of the benefit of screening since it
represents the time by which diagnosis is advanced by screening. Since detection of
cancer at an earlier stage confers a survival benefit (this is the main argument behind
early detection programs), lead times quantify the potential benefit in the context of the
cancer's natural history. Sojourn time, reflecting duration of pre-diagnosis disease
progression in the absence of screening, provides valuable information concerning this
natural history.

METHODS
Note that mean lead and sojourn times are projected based on the basic model variant
that excludes DRE screening to avoid confounding PSA screening with DRE screening.
Lead time is defined as the time interval from screen detection to clinical diagnosis.
Sojourn time is defined as the time interval from disease onset to clinical diagnosis.
Results reported here are averages over 10 runs.

RESULT
Mean lead times by age at PSA detection

Mean lead times by age at PSA detection

Age Censored Relevant Uncensored

50-54 7.77 7.88 8.17

55-59 7.90 8.00 8.67

60-64 7.62 7.70 8.96

65-69 6.98 6.91 8.96

70-74 6.42 6.20 9.31

75-79 6.30 5.44 12.25

80-84 4.59 3.18 11.46

Adjusted 7.13 6.97 9.27
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Figure 12. Mean lead times by age group and definition.

Mean sojourn times by age at onset

Age Censored Relevant Uncensored

50-54 19.18 18.29 16.84

55-59 16.74 16.27 14.67

60-64 14.30 14.12 12.18

65-69 11.99 11.91 9.66

70-74 9.79 9.62 7.97

75-79 7.69 7.33 6.15

80-84 5.78 5.11 4.51

Adjusted 13.80 13.36 11.77
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Figure 13. Mean sojourn times by age group and definition.

Mean local-regional stage durations by age at onset

Age Censored Relevant Uncensored

50-54 12.20 21.53 22.52

55-59 9.70 19.33 19.86

60-64 7.23 16.90 16.70

65-69 5.05 14.41 13.41

70-74 3.58 11.76 11.21

75-79 2.28 8.97 8.77

80-84 1.32 6.17 6.51

Adjusted 7.23 15.95 16.07
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Figure 14. Mean local-regional stage durations by age group and definition.

DISCUSSION
Relevant mean lead times are longer for younger men than for older men since the
possible intervals until diagnosis narrows with age. Our projections are modestly

higher than estimates reported by Gann et al.1 and Telesca et al.2 but considerably

lower than those presented by Draisma et al.3 However, we note that estimates based
on data from a European screening trial differ in important ways from the US

population setting.4

Relevant mean sojourn times around 12 years are consistent with earlier estimates

obtain with the original version of the CISNET FHCRC model.5

Mean local-regional stage durations for relevant cases is estimated to be approximately
16 years. This estimate is difficult to validate since published literature tend to use a
finer staging system than what is available in SEER. These results are nonetheless
reported here for completeness.

CONCLUSION
Model-projected mean lead and sojourn times are generally consistent with previously
published studies.
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RELEVANT PARAMETERS
Validation of lead and sojourn times serves as a check of several model parameters,
including the hazard of disease onset and the rate of transitioning to clinical disease.

REFERENCES:
1 Gann PH, Hennekens CH, Stampfer MJ “A prospective evaluation of plasma

prostate-specific antigen for detection of prostate cancer” in JAMA 1995; 273:
289-94

2 Telesca D, Etzioni R, Gulati R “Estimating lead time and overdiagnosis associated
with PSA screening from prostate cancer incidence trends” in Biometrics 2008;
64: 1: 10-9

3 Draisma G, Boer R, Otto SJ, van der Cruijsen IW, Damhuis RA, Schroder FH, de
Koning HJ, “Lead times and overdetection due to prostate-specific antigen
screening: Estimates from the European Randomized Study of Screening for
Prostate Cancer” in J Natl Cancer Inst 2003; 95: 12: 868-78

4 Draisma, G, Etzioni, R, Tsodikov, A, Mariotto, A, Wever, E, Gulati, R, Feuer, E, de
Koning, H “Lead time and overdiagnosis in prostate-specific antigen screening:
Importance of methods and context” in J Natl Cancer Inst 2009; 101: 6: 374-83

5 Etzioni R, Cha R, Feuer EJ, Davidov O “Asymptomatic incidence and duration in
prostate cancer” in Am J Epidemiol 1998; 148: 775-85
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OVER DIAGNOSIS

SUMMARY
This documents summarizes projected overdiagnosis rates from the basecase PSAPC
model.

RESULT TYPE
Validation

OVERVIEW
An individual is overdiagnosed if he is screen detected but would not have been
diagnosed in the absence of PSA screening. Overdiagnosis rates represent one of the
main drivers of costs associated with PSA screening.

METHODS
The PSAPC counts simulated individuals who are screen-detected but whose date of
clinical diagnosis exceeds his date of other-cause death. These overdiagnosis counts are
recorded by age, year, and stage. Overdiagnosis rates are calculated by dividing these
counts by all diagnoses or by screen detections in each age, year, and stage,
aggregating across stages, then age-adjusted to the 2000 US standard million for ages
50-84. Reported overdiagnosis rates are averages over 20 random seeds with re-
estimated natural and clinical history parameters.
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RESULT

Figure 13. Age-adjusted overdiagnosis rates by calendar year.
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Figure 14. Overdiagnosis as fraction of all detections by age group and calendar year.
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Figure 15. Overdiagnosis as fraction of screen detections by age group and calendar
year.

DISCUSSION
Age-adjusted overdiagnosis rates are relatively flat after 1992, about when PSA
screening stabilized in the US population. The model projects that each year about 18%
of new cases (29% of new screen-detected cases) are overdiagnosed.

The age-specific projections illustrate two intuitive patterns. First, overdiagnosis rates
as fractions of screen detections are constant across years, while overdiagnosis rates as
fractions of all diagnoses follow PSA dissemination trends, increasing as screening
disseminates into the population in the early years then stabilizing in later years.
Second, higher overdiagnosis rates are associated with older age groups; this is
expected since older men face higher risk of other-cause death each year, so that when
these men are detected by screening, it is more likely that other-cause death occurs
before they would have presented clinically.

CONCLUSION
Overdiagnosis results exhibit intuitive general features and are consistent with values
reported in the literature for the US population.

Fred Hutchinson CRC (PSAPC)
Over Diagnosis

Discussion

Page 66 of 201 All material © Copyright 2003-2009 CISNET



Fred Hutchinson CRC (PSAPC)
Over Diagnosis

Conclusion

Page 67 of 201 All material © Copyright 2003-2009 CISNET



KEY REFERENCES
Albertsen PC (1998) Editorial: Computer modeling—What should we look for? in

J Urol 159:3, p 934

Albertsen, PC, Hanley, JA, Fine J (2005) 20-year outcomes following conservative
management of clinically localized prostate cancer in JAMA 293:17, p 2095-101

Andriole, GL, Levin, DL, Crawford, ED, Gelmann, EP, Pinsky, PF, Chia, D,
Kramer, BS, Reding, D, Church, TR, Grubb, RL, Grubb, RL, Izmirlian, G,
Ragard, LR, Clapp, JD, Prorok, PC, Gohagan, JK, PLCO Project Team (2005)
Prostate cancer screening in the Prostate, Lung, Colorectal and Ovarian
(PLCO) Cancer Screening Trial: Findings from the initial screening round of a
randomized trial in J Natl Cancer Inst 97, p 433-8

Babaian RJ,, Toi A,, Kamoi K,, Troncoso P,, Sweet J,, Evans R,, Johnston D,,
Chen M (2000) A comparative analysis of sextant and an extended 11-core
multisite directed biopsy strategy in J Urol 163, p 152-7

Babaian RJ, Kojima M, Ramirez EI, Johnston D (1996) Comparative analysis of
prostate specific antigen and its indexes in the detection of prostate cancer in J
Urol 156:2, p 432-7

Babaian, RJ, Fritsche, H, Ayala, A, Bhadkamkar, V, Johnston, DA, Naccarato, W,
Zhang Z (2000) Performance of a neural network in detecting prostate cancer
in the prostate-specific antigen reflex range of 2.5 to 4.0 ng/mL in Urology 56:6,
p 1000-6

Barry MJ, Fleming C, Coley CM, Wasson JH, Fahs MC, Oesterling JE (1995)
Should Medicare provide reimbursement for prostate-specific antigen testing
for early detection of prostate cancer? Part IV: Estimating the risks and
benefits of an early detection program in Urology 4:46, p 445-61

Bill-Axelson, A, Holmberg, L, Ruutu, M, Häggman, M, Andersson, SO, Bratell,
S, Spångberg, A, Busch, C, Nordling, S, Garmo, H, Palmgren, J, Adami, HO,
Norlén, BJ, Johansson, JE, Scandinavian Prostate Cancer Group Study No. 4
(2005) Radical prostatectomy versus watchful waiting in early prostate cancer
in N Engl J Med 352:19, p 1977-84

Boring CC, Squires TS, Tong T, Montgomery S (1994) Cancer Statistics, 1994 in
CA: A Cancer Journal for Clinicians:44, p 7-26

Brown ML, Riley GF, Potosky AL, Etzioni RD (1999) Obtaining long-term
disease-specific costs of care: Application to Medicare enrollees diagnosed
with colorectal cancer in Medical Care 37:12, p 1249-59

Carter HB, Morrell CH, Pearson JD, Brant LJ, Plato CC, Metter EJ, Chan DW,
Fozard JL, Walsh PC (1992) Estimation of prostatic growth using serial
prostate-specific antigen measurements in men with and without prostate
disease in Cancer Res:52, p 3323-8

Carter HB, Piantadosi S, Isaacs JT (1990) Clinical evidence for and implications of
the multistep development of prostate cancer in J Urol:143, p 742-6

Catalona WJ, Smith DS, Ratliff TL, Basler JW (1993) Detection of organ-confined
prostate cancer is increased through prostate-specific antigen-based screening
in JAMA, p 948-54

Clark LC, Combs GF, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS,
Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL, Park HK,
Sanders BB, Smith, CL, Taylor JR, and The Nutritional Prevention of
Cancer Study Group (1996) Effects of selenium supplementation for cancer
prevention in patients with carcinoma of the skin: A randomized clinical trial
in JAMA, p 1957-63

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

Fred Hutchinson CRC (PSAPC)
Key References

Page 68 of 201 All material © Copyright 2003-2009 CISNET



Coley CM, Barry MJ, Fleming C, Fahs MC, Mulley AG (1997) Early detection of
prostate cancer Part II: Estimating the risks, benefits, and costs in Ann Intern
Med 126:6, p 468-79

Crawford ED, DeAntoni EP, Etzioni R, Schaefer VC, Olson RM, Ross CA, and
the Prostate Cancer Education Council (1996) Serum prostate-specific antigen
and digital rectal examination for the early detection of prostate cancer in a
national community-based program in Urology:47, p 863-9

Cronin KA, Slate EH, Turnbull BW, Wells MT (1994) Using the Gibbs sampler to
detect changepoints: Application to PSA as a longitudinal marker for prostate
cancer in Computing Science and Statistics:26, p 314-8

Draisma G, Boer R, Otto SJ, van der Cruijsen IW, Damhuis RA, Schroder FH, de
Koning HJ (2003) Lead times and overdetection due to prostate-specific
antigen screening: Estimates from the European Randomized Study of
Screening for Prostate Cancer in J Natl Cancer Inst 95:12, p 868-78

Draisma, G, Etzioni, R, Tsodikov, A, Mariotto, A, Wever, E, Gulati, R, Feuer, E,
de Koning, H (2009) Lead time and overdiagnosis in prostate-specific antigen
screening: Importance of methods and context in J Natl Cancer Inst 101:6, p
374-83

Dugan JA, Bostwick DG, Myers RP, Qian J, Bergstrahl EJ, Oesterling JE (1996)
The definition and preoperative prediction of clinically insignificant prostate
cancer in JAMA 275:4, p 288-94

Eichler K,, Hempel S,, Wilby J,, Myers L,, Bachmann LM,, Kleijnen J (2006)
Diagnostic value of
systematic biopsy methods in the investigation of prostate cancer: A
systematic review in J Urol 175, p 1605-12

Etzioni R, Cha R, Cowen ME (1999) Serial prostate specific antigen screening for
prostate cancer: A computer model evaluates competing strategies in J Urol
162, p 741-8

Etzioni R, Cha R, Feuer EJ, Davidov O (1998) Asymptomatic incidence and
duration in prostate cancer in Am J Epidemiol:148, p 775-85

Etzioni R, Gulati R, Falcon S, Penson DF (2008) Impact of PSA screening on the
incidence of advanced stage prostate cancer in the United States: A
surveillance modeling approach in Med Decis Making 28:3, p 323-31

Etzioni R, Legler JM, Feuer EJ, Merrill RM, Cronin KA, Hankey BF (1999) Cancer
surveillance series: Interpreting trends in prostate cancer—Part III:
Quantifying the link between population prostate-specific antigen testing and
recent declines in prostate cancer mortality in J Natl Cancer Inst:91, p 1033-9

Etzioni R, Pepe M, Longton G, Hu C, Goodman G (1999) Incorporating the time
dimension in receiver operating characteristic curves: A prostate cancer case
study in Med Decis Making:19, p 242-51

Etzioni R, Ramsey SD, Berry K, Brown M (2001) The impact of including future
medical care costs when estimating the costs attributable to a disease: A
colorectal cancer case study in Health Econ 10:3, p 245-56

Etzioni R, Urban N, Baker M (1996) Estimating the costs attributable to a disease
with application to ovarian cancer in J Clin Epidemiol:49, p 95-103

Etzioni RD, Kadane JB (1995) Bayesian statistical methods in public health and
medicine in Annu Rev Public Health:16, p 23-41

Fleming Craig, Wasson JH, Albertsen PC, Barry MJ, Wennberg JE (1993) A
decision analysis of alternative treatment strategies for clinically localized
prostate cancer in JAMA 269:20, p 2650-8

Fred Hutchinson CRC (PSAPC)
Key References

Page 69 of 201 All material © Copyright 2003-2009 CISNET



Gann PH, Hennekens CH, Stampfer MJ (1995) A prospective evaluation of
plasma prostate-specific antigen for detection of prostate cancer in JAMA:273,
p 289-94

Hodge KK,, McNeal JE,, Terris MK,, Stamey TA (1989) Random systematic
versus directed ultrasound guided transrectal core biopsies of the prostate in J
Urol 142, p 71-5

Inoue LY, Etzioni R, Slate EH, Morrell C, Penson DF (2004) Combining
longitudinal studies of PSA
in Biostatistics 5:3, p 483-500

Inoue, L, Etzioni, R, Morrell, C, Muller, P (2008) Modeling disease progression
with longitudinal markers in Journal of the American Statistical Association 103,
p 259-70

Klein EA,, Zippe CD (2000) Editorial: Transrectal ultrasound guided prostate
biopsy—defining a new standard in J Urol 163:179-80,

Luebeck, GBhat: General likelihood exploration,

Mariotto A, Etzioni R, Krapcho M, Feuer EJ (2007) Reconstructing prostate-
specific antigen (PSA) testing patterns among black and white men in the US
from Medicare claims and the National Health Interview Survey in Cancer
109:9, p 1877-86

Mettlin C, Murphy G, Babaian R, Chesley A, Kane RA, Littrup PJ, Mostofi FK,
Ray PS, Shanberg AM, Toi A (1996) The results of a five-year early prostate
cancer detection intervention in Cancer 1:77, p 150-59

National Hospital Discharge Survey Web PageHospital Discharge and
Ambulatory Surgery Data (Latest update - July 21, 1999). http://www.cdc.gov/
nchs/about/major/hdasd/nhds.htm.,

Norberg M,, Egevad L,, Holmberg L,, Sparen P,, Norlen BJ,, Busch C (1997) The
sextant protocol for ultrasound-guided core biopsies of the prostate
underestimates the presence of cancer in Urology 50, p 562-6

Oesterling JE, Jacobsen SJ, Chute CG, Guess HA, Girman CJ, Panser LA, Lieber
MM (1993) Serum prostate-specific antigen in a community-based population
of healthy men in JAMA:270, p 860-4

Omenn GS, Goodman GE, Thornquist MD, Balmes J, Cullen MR, Glass A,
Keogh JP, Meyskens FL, Valanis B, Williams JH, Barnhart S, Hammar S
(1996) Effects of a combination of beta carotene and vitamin A on lung cancer
and cardiovascular disease in N Engl J Med 18:334, p 1150-5

Pearson JD, Morrell CH, Landis PK, Carter HB, Brant LJ (1994) Mixed-effects
regression models for studying the natural history of prostate disease in Stat
Med:13, p 587-601

Pienta K, Goodson JA, Esper S (1996) Epidemiology of prostate cancer: Molecular
and environmental clues in Urology 5:48, p 676-83

Pinsky PF, Andriole GL, Kramer BS, Hayes RB, Prorok PC, Gohagan JK (2005)
Prostate biopsy following a positive screen in the Prostate, Lung, Colorectal
and Ovarian cancer screening trial in J Urol 173:3, p 746-50

Potosky AL, Miller BS, Kramer BS, Albertsen PC (1995) The role of increasing
detection in the rising incidence of prostate cancer. in JAMA:273, p 548-552

Potosky AL, Kessler L, Gridley G, Brown CC, Horm JW (1990) Rise in prostatic
cancer incidence associated with increased use of trans-urethral resection in J
Natl Cancer Inst:82, p 1624-8

Potosky AL, Riley GF, Lubitz JD, Mentnech RM, Kessler LG (1993) Potential for
cancer related health services research using a linked Medicare-tumor registry
database in Med Care 8:31, p 732-48

Fred Hutchinson CRC (PSAPC)
Key References

Page 70 of 201 All material © Copyright 2003-2009 CISNET

http://www.cdc.gov/nchs/about/major/hdasd/nhds.htm.,
http://www.cdc.gov/nchs/about/major/hdasd/nhds.htm.,


Presti JCJ, Chang JJ, Bhargava V, Shinohara K (2000) The optimal systematic
prostate biopsy scheme should include 8 rather than 6 biopsies: Results of a
prospective clinical trial in J Urol 163:1, p 163-6

Richie JP, Catalona WJ, Ahmann FR, Hudson MA, Scardino PT, Flanigan RC,
deKernion JB, Ratliff TL, Kavoussi LR, Dalkin BL, et al (1993) Effect of
patient age on early detection of prostate cancer with serum Prostate-Specific
Antigen and Digital Rectal Examination. in Urology:42, p 365-74

Roberts RO, Bergstralh EJ, Katusic SK, Lieber MM, Jacobsen SJ (1999) Decline in
prostate cancer mortality from 1980 to 1997, and an update on incidence
trends in Olmsted County, Minnesota in J Urol 161:2, p 529-33

Schroder, FH, van der Maas, P, Beemsterboer, P, Kruger, AB, Hoedemaeker, R,
Rietbergen, J, Kranse R (1998) Evaluation of the digital rectal examination as
a screening test for prostate cancer. Rotterdam section of the European
Randomized Study of Screening for Prostate Cancer in J Natl Cancer Inst 90:23,
p 1817-23

Slate EH, Clark LC (1999) Using PSA to detect prostate cancer onset: An
application of Bayesian retrospective and prospective changepoint
identification in Case Studies in Bayesian Statistics IV, p 511-34

Smith DS, Catalona WJ (1994) The nature of prostate cancer detected through
prostate-specific antigen based screening in J Urol:152, p 1732-6

Spall, J (2003) Introduction to stochastic search and optimization: Estimation,
simulation, and control,

Stamey TA (1995) Making the most out of six systematic biopsies in Urology 45:1, p
2-12

Stanford JL, Stephenson RA, Coyle LM, Cerhan J, Correa R, Eley JW, Gilliland
F, Hankey B, Kolonel LN, Kosary C, Ross R, Severson R, West D (1999)
Prostate Cancer Trends 1973-1995, SEER Program in National Cancer Institute,

Stanford JL, Wicklund KG, McKnight B, , Daling JR, Brawer MK (1999)
Vasectomy and risk of prostate cancer in Cancer Epidemiol Biomarkers Prev:8, p
881-6

Surveillance Research Program, National Cancer Institute (1997) SEER*Stat
Databases: Incidence SEER 9 Regs Public Use, November 2005 (1973-2003),

Telesca D, Etzioni R, Gulati R (2008) Estimating lead time and overdiagnosis
associated with PSA screening from prostate cancer incidence trends in
Biometrics 64:1, p 10-9

Thompson, IM, Goodman, PJ, Tangen, CM, Lucia, MS, Miller, GJ, Ford, LG,
Lieber, MM, Cespedes, RD, Atkins, JN, Lippman, SM, Carlin, SM, Ryan, A,
Szczepanek, CM, Crowley, JJ, Coltman, CA Jr. (2003) The influence of
finasteride on the development of prostate cancer in N Engl J Med 349:3, p
214-24

Tsodikov, A, Solomon, C (2008) Generalized self-consistency: Multinomial logit
model and Poisson likelihood in J Stat Plan Inference 138:8, p 2380-97

Urban N, Drescher C, Etzioni R, Colby C (1997) Use of a stochastic simulation
model to identify an efficient protocol for ovarian cancer screening in Control
Clin Trials:18, p 251-70

Weiss NS, Rossing MA (1996) Healthy screenee bias in epidemiologic studies of
cancer incidence in Epidemiology 3:7, p 319-22

Whitmore WF (1988) Background for screening: Natural history and treatment in
EORTC Genitourinary Group Monograph 5: Progress and Controversies in
Oncological Urology II, p 123-30

Whitmore WF (1990) Natural history of low-stage prostatic cancer and the impact
of early detection in Urol Clin N Am:17, p 689-97

Fred Hutchinson CRC (PSAPC)
Key References

Page 71 of 201 All material © Copyright 2003-2009 CISNET



Whittemore AS, Keller JB, Betensky R (1991) Low grade latent prostate cancer
volume: Predictor of clinical cancer incidence? in J Natl Cancer Inst:83, p 1231-5

Whittemore AS, Lele C, Friedman GD, Stamey T, Vogelman JH, Orentreich N
(1995) Prostate-specific antigen as predictor of prostate cancer in black men
and white men in J Natl Cancer Inst:87, p 354-60

Wun LM, Merrill RM, Feuer EJ (1998) Estimating lifetime and age-conditional
probabilities of developing cancer in Lifetime Data Anal:4, p 169-86

CategoryCoreDocs

Fred Hutchinson CRC (PSAPC)
Key References

Page 72 of 201 All material © Copyright 2003-2009 CISNET



FRED HUTCHINSON
CANCER RESEARCH CENTER
(PCSIM)
Important note: This document will be updated periodically. The most current
version is available at http://cisnet.cancer.gov/profiles. Note that unlike most PDF
documents, the CISNET model profiles are not suitable for printing as they are not
typically written or read in sequential fashion.

We recommend you let your interests guide you through this document, using the
navigation tree as a general guide to the content available.

The intent of this document is to provide the interested reader with insight into
ongoing research. Model parameters, structure, and results contained herein
should be considered representative but preliminary in nature.

We encourage interested readers to contact the contributors for further
information.

Go directly to the: Reader's Guide.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Validations Overview
Key References

FLEXKB DOCUMENT
Version: HI.001.12212009.86041

Document generated: 12/21/2009

All material © Copyright 2003-2009 CISNET

http://cisnet.cancer.gov/profiles


READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Validations Overview
A discussion of the major calibration and validation exercises performed throughout
model development to ensure (improve?) model correctness.

Key References
A list of references used in the development of the model.

Further Reading
These topics will provide a intermediate level view of the model. Consider these
documents if you are interested gaining in a working knowledge of the model, its
inputs and outputs.
Advanced Reading
These topics denote more detailed documentation about specific and important aspects
of the model structure
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MODEL PURPOSE

SUMMARY
The FHCRC prostate cancer microsimulation is the product of extensive quantitative
investigation into prostate cancer natural history, prostate-specific antigen (PSA)
production, PSA testing, and disease-specific and other-cause mortality in the US
population. This document summarizes FHCRC objectives in developing a prostate
cancer microsimulation.

PURPOSE
The objective of the FHCRC prostate cancer model is to quantify the role of PSA
screening in US prostate cancer incidence and mortality trends. Prostate cancer
incidence and mortality in the US have been declining since the early 1990s. The role of
PSA screening in these trends is a subject of intense debate. Information on the efficacy
of PSA testing from controlled clinical trials is lacking, and researchers and the public
are divided about how much information about the test can be gleaned from the
observed trends.

To address the need for a quantitative approach to linking population PSA testing and
prostate cancer trends, our primary specific aim is to develop a computer
microsimulation model to project the impact of PSA screening on US prostate cancer
incidence and mortality. The model will first project population prostate cancer
incidence and mortality in the absence of PSA screening. The model will then
superimpose dissemination of PSA screening and the modeled population trends will
be compared with those observed.

Early detection of prostate cancer is affected not only by the extent of screening but
also by the ability of the test to identify latent cancers. This depends on the growth of
PSA in prostate cancer cases which has been estimated in several studies. Since these
studies yield somewhat inconsistent results, part of our modeling work will be to
estimate PSA growth trajectories based on data from retrospective stored-serum
studies. The results of this analysis will be used to inform the microsimulation model
about PSA growth in men with prostate cancer.
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MODEL OVERVIEW

SUMMARY
This document describes the individual components of the microsimulation and
discusses the insights to be gained by developing and using the FHCRC prostate
cancer screening microsimulation.

PURPOSE
Our primary aim is to estimate the impact of PSA screening on US prostate cancer
incidence and mortality. Our approach is to generate disease and clinical histories for
individual subjects in both the absence and presence of PSA screening. Comparison of
these histories quantifies the impact of PSA screening on prostate cancer overdiagnosis
and mortality.

BACKGROUND
Prostate cancer is the most common non-dermatologic male malignancy in the US and
the second leading cause of cancer-related mortality in men. Despite the uncertain
efficacy of PSA measurement as a tool for early detection of prostate cancer, its use as
such has increased dramatically since 1988. By 1994 approximately half of men aged 65

or older in 1987 had had a PSA test1.

From 1992 to 2004, prostate cancer mortality in the US declined by 35% and the
incidence of late-stage disease by 75%. However, while there is a general consensus
that PSA screening explains much of the distant-stage decline, there is still considerable
debate about its role in the observed mortality trends.

Many studies have explored the connection between PSA screening and prostate
cancer mortality declines. Ecologic analyses have been widely used to compare
prostate cancer mortality rates across geographic areas with different PSA utilization
patterns. However, nearly all these efforts have yielded negative results. For example,
prostate cancer mortality rates declined in both England and Wales, but PSA screening
use is considerably lower in these countries than in the US. Another study found that
prostate cancer death rates were virtually the same in Seattle and Connecticut even
though PSA testing, biopsy, and treatment were much more common in Seattle. While
concerns have been raised about the validity and interpretation of negative ecologic
studies of PSA screening, there is no question that their persistently negative results
have influenced both professional and public opinion about the value of the test.

Several investigators have suggested alternative explanations for declining rates of
prostate cancer mortality. These include changes in treatment practices such as
increases in curative therapy—surgery and radiation—for localized disease and
hormone ablation therapy for localized disease or for early recurrence. In the US, the
frequency of curative therapy has almost doubled since 1983, and studies have shown
that the use of hormone therapy in conjunction with primary radiation therapy in the
US increased substantially during the 1990s. Both of these treatment approaches have
shown benefit in randomized studies. However, the role of treatment advances in
explaining mortality declines also remains unclear.
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The value of PSA screening is a pressing question because it carries high costs in terms
of overdiagnosis and overtreatment. As results from two screening trials in the US and
Europe are not expected for several years, important insights at present must rely on
careful examination of the growing knowledge base concerning disease natural history,
progression, and mortality. We use mathematical modeling to connect this information
and quantify how much of the US prostate cancer mortality decline may plausibly be
attributed to PSA screening.

MODEL DESCRIPTION
Dr. Etzioni and colleagues previously developed a model of serial PSA screening2. The
FHCRC prostate cancer model is an extension of this earlier work. The basic premise of
the model is to distinguish cases from the total population simulated and to measure
the benefit of stage shifting for the cases that are screen detected. A life history of a
hypothetical case is presented in Figure 1.

Figure 1. The life history of a hypothetical case, with disease transitions and major
events in the absence and presence of screening marked. The difference in endpoints
between survival from screen detection (SSCR) and survival from clinical diagnosis
(SCLIN) produces the individual benefit due to screening.

The microsimulation generates clinical and disease histories for a hypothetical cohort
of men beginning at age 30. The model comprises five basic modules.

Natural history
The natural history module generates independent:

1. clinical histories (year of birth, age/stage at diagnosis, age of other cause death),
and

2. disease histories (age of asymptomatic onset, stage lengths for disease

progression as described by Cowen3 and Whitmore5).

We combine data from the Surveillance, Epidemiology, and End Results (SEER)
program, the US Census Bureau ( USCB), and the National Center for Health Statistics
(NCHS) to generate clinical histories. Disease histories are generated by combining

data from Etzioni's asymptomatic onset study6 with Cowen's disease progression

rates3.
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Figure 1. Markov Model diagram for Natural History of Prostate Cancer Onset and
Progression. XXoc denotes death due to causes other than prostate cancer. AsxInci
denotes asymptomatic incidence which occurs at the transition to stage A1. Transition
probabilities (rate parameters for exponential dwelling-time distributions) between the
American Urological Association (AUA) pathologic stages as defined by Cowen et al
are prefixed with the letter p. NoCDx indicates that clinical diagnosis may be
disallowed during the earliest part of stage A1.

Clinical diagnosis The clinical diagnosis module matches one disease history with each
clinical history, thereby producing a complete disease profile for each hypothetical
subject. We have explored several methods for matching disease and clinical histories
and determined that uniform random matching, while slower, sidesteps artificial
anomalies. The model projections of disease incidence prior to the PSA era (i.e., before
1988) are calibrated to match clinical incidence rates observed in the population.

Fred Hutchinson CRC (PCSIM)
Model Overview

Model Description

Page 78 of 201 All material © Copyright 2003-2009 CISNET



Serial PSA screening The screening module assigns screening events to subjects. Subjects
are eligible for a screen if they are alive and have not been previously diagnosed with

prostate cancer. Screen dates are assigned based on Mariotto et al7. A positive test is
defined as PSA > 4.0 ng/ml. We do not model digital rectal exam (DRE) testing.

PSA growth PSA trajectories have different growth rates, dependent on whether the
subject is in a cancerous or non-cancerous state. Not all subjects experience disease

onset in their lifetime. The PSA growth model is based on work by Inoue et al.8. Prior

modeling work used the studies of Oesterling9 and Carter10.

Prostate cancer survival The survival module generates age at prostate cancer death for
each subject based on his complete disease profile under screening and non-screening
scenarios. We use SEER survival data from 1980 to 1987 to determine each case's age at
death following prostate cancer diagnosis. Years of survival after diagnosis depend on
age and stage; years are added to the age at clinical diagnosis, which is termed “lead-
time delay.” Model projections of disease-specific mortality rates prior to the PSA era
are calibrated to match those observed in the population.

Disease-specific survival is irrelevant for latent subjects since, by definition, all latents
die from some other cause before prostate cancer affects their lifespan.

CONTRIBUTORS
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ASSUMPTION OVERVIEW

SUMMARY
The assumptions inherent in the FHCRC modeling approach are described below.
When possible, we discuss the potential impact of these assumptions on our results.

BACKGROUND
Our model combines information on both the observed and latent aspects of the
disease. Most of the assumptions made pertain to the latent natural history, but some
also relate to the interface between the observed data and the latent disease history.

Our natural history model (onset and progression through disease stages) is based on

two published studies: the Markov model of Cowen et al1 and the asymptomatic onset

and duration study of Etzioni et al2. Our first main assumption is that these are
accurate reflections of the frequency of disease onset and the rates of disease
progression through the clinical stages of prostate cancer as defined by the American
Urological Association (AUA, aka Whitmore-Jewitt) staging system.
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Our second main assumption comes when we link natural histories with clinical
diagnosis. We use a matching algorithm that randomly selects natural histories at the
correct time so as to match observed age- and stage-specific clinical incidence. While
the algorithm achieves the desired result, it also induces a structure on the natural
histories that ultimately are selected to be clinically diagnosed; these end up having
earlier ages at onset and shorter stage durations than those natural histories that do not
have a corresponding date of clinical diagnosis (these “latent” histories are ultimately
our candidates for overdiagnosis). See Figure 1. A further assumption concerning
clinical incidence is that this would have remained constant at its pre-PSA level (the
level observed in 1987) in the absence of screening.

Figure 1. Age at disease onset (left) and stage A1 duration (right) distributions for cases
and latents resulting from the matching algorithm.

One of the hidden assumptions that is implicit in our matching algorithm is that stage
D2 disease is always symptomatic.

Each individual is assigned a PSA growth trajectory that is based on a meta-analysis of

stored serum data, conducted by Inoue et al3. This dataset provides information on
PSA growth for clinical cases by stage at clinical diagnosis. We assume that the PSA
growth for latent cases is on average approximately half that of the PSA growth for the
local-regional clinical cases. We link PSA growth for an individual with his natural
history as follows: the quantile in the distribution of PSA slopes across individuals is
set to be one minus the individual's quantile in the distribution of stage A1 durations.
Thus, those individuals with the longest stage A1 durations receive the lowest annual
PSA growth rates and vice versa.
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Our next major assumption relates to screening and biopsy practices in the population.
One of our observed inputs is a set of screening histories that we use to assign
individuals to screening tests. These inputs have been rigorously estimated based on

data from the 2000 NHIS and the linked SEER -Medicare databases (Mariotto et al4).
We assume that a PSA level of 4.0 ng/ml is the trigger for biopsy, which may not be an
accurate reflection of practice. Based on this assumption, we use biopsy frequencies
from the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial (by age
and PSA level) to assign men to receive a biopsy. We also assume that biopsy accuracy
increases over time, in accordance with increases in the number of cores typically
sampled at biopsy. Until the late 1980s, four-core biopsies were standard; by the
mid-1990s six-core biopsies were standard, and by the early 2000s, 8-12 and extended-
core biopsies were standard. We have conducted a literature review and assume that
for cases with stage A1 disease, 6-core biopsy accuracy is 80%, 4-core biopsy accuracy
is 2/3 of this amount, and extended-core biopsies are 100% accurate. For cases with
more advanced disease, biopsy accuracy is assumed to be 100%.

Our final major assumption is one that underlies all of the screening models in
CISNET, namely that stage shift implies survival shift. A case who would have been
detected clinically in late stage but is shifted by PSA screening to detection in local-
regional stage has his survival from clinical diagnosis re-set to reflect that of a local-
regional stage case. We assume that if the distant-stage survival is relatively good (or
poor), then this will be the case with the local-regional survival as well. To achieve this
correspondence, the quantile of the shifted survival within the local-regional stage
distribution is set to be equal to the quantile of the individual's original distant-stage
survival in its distribution.

The validity of these assumptions is not tested directly. The model is validated by
comparing a results with published studies (see Validations Overview) and the model-
projected prostate cancer incidence and mortality trends are calibrated against those
observed in SEER prior to the PSA era.

ASSUMPTION LISTING

Mortality and clinical incidence:

• Age-and stage-specific clinical incidence rates would have remained at 1987 levels
in the absence of screening. Thus, this assumption does not explicitly take into
account changes in the frequency of transurethral resections of the prostate
(TURPs) during the PSA era. TURPs were closely linked with increases in prostate

cancer incidence during the 1980s (Merrill et al5), but use of this procedure
declined sharply in the 1990s following the dissemination of medical approaches

to manage benign prostatic hyperplasia. Telesca et al6 have recently estimated a
background trend in incidence in the absence of PSA screening. This trend levels
off after 1987 (i.e., it does not continue its historical increase), which is consistent
with the constant secular trend in incidence assumed in the model.

• Age- and stage-specific incidence prior to 1973 is adequately approximated by the
rates observed in 1973 to 1975.
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• Stage D2 is symptomatic. Latents (individuals who are not clinically diagnosed in
their lifetimes) must have an age at other-cause death that precedes their age at
transition to AUA stage D2 (distant metastases).

Asymptomatic onset:

• Asymptomatic onset7 used in the model is estimated from autopsy studies
performed in the US in the 1950s. The model assumes that these adequately reflect
the prevalence of latent disease. Based on these data, we have estimated that
approximately 36% of men develop prostate cancer in their lifetimes. It is likely
that this is an underestimate of the true amount of latent disease in the population
(newer biopsy studies using more modern technology have yielded higher age-
specific prevalences), but this assumption still yields sufficient latent cases for our
modeling purposes.

Disease progression and clinical presentation:

• A Markov model is used to describe the progression of disease through AUA

stages. Stage transition rates are based on work by Cowen8.

• Disease progression rates are independent of patient age, race, and date of disease
onset. Stage durations are exponentially distributed and are not correlated with
each other.

PSA growth:

• Pre-cancerous PSA growth is based on Oesterling et al9. PSA increases by
approximately 3% annually.

• Cancerous PSA growth is derived from a study by Inoue et al10. This study
analyzed data on mostly clinical cases. The mean annual growth rate for cases
destined to be diagnosed in distant stage is 60%, and for cases destined to be
diagnosed in local-regional stage it is 15%. For latents, we assume that the annual

increase in PSA is half that estimated by Inoue et al10 for local-regional cases.

• PSA growth accelerates at the time of entry into stage A1. It is also possible to
specify a lag time (as a fraction of the stage A1 duration) until the start of PSA
acceleration.

• PSA growth for an individual is inversely associated with the rate of disease
progression from stage A1 to subsequent stages. An individual's quantile in the
population distribution of PSA slopes is set to be one minus the individual's
quantile in the populations distribution of stage A1 durations. Thus, those
individuals with the longest stage A1 durations receive the lowest annual PSA
growth rates and vice versa.
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PSA test schedule:

• The PSA dissemination schedule is based on the work of Mariotto et al4. A
positive test is defined as PSA > 4.0 ng/ml.

• We do not model digital rectal exam (DRE) testing. We effectively assume that the
frequency of DRE screening remains at pre-PSA-era levels. Thus, we do not
capture any possible increase in the frequency of DRE as a consequence of the
increase in PSA use. If use of DRE testing increases during the PSA era (e.g., DRE
may be routinely conducted in conjunction with PSA screening), then this may
lead to underascertainment of cases at screening tests because we will not be
capturing any increase in detection due to DREs with positive results in the
absence of positive PSA test results. However, we anticipate these to be relatively
small in number.

PSA test follow-up:

• Not all men with a positive PSA test will submit to a follow-up biopsy. The model
assumes that the biopsy rate following a positive PSA test is similar to the one-

year biopsy frequencies presented in Pinsky et al11.

• No men with a PSA test

• Biopsy accuracy parameters for stage A1 cases are based on our assessment of
trends in number of cores based on an extensive literature review. We have
determined that 4-core biopsies (assumed accuracy 53%) were standard at the start
of the PSA era, 6-core biopsies (assumed accuracy 80%) were standard in the mid
1990s, and higher numbers of cores (assumed accuracy 100%) were standard by
the early 2000s.

• We assume that biopsy is 100% accurate when disease has progressed beyond
stage A1.

Survival following diagnosis:

• The major survival benefit assumption for the model is that prostate cancer is a
disease whose natural progression can be interrupted by intervention at an early
stage; specifically, stage shift (from distant to local-regional) implies survival shift
(from distant-stage survival to local-regional-stage survival).

• We do not model within-stage shifts, so a case shifted from regional to local or
within local stage receives no survival benefit.

• We assume no improvements in survival during the PSA era due to treatment
since we are trying to isolate the effect of the screening-induced stage shift on
population mortality. Thus, in the absence of PSA testing, we assume that disease-
specific survival observed for cases diagnosed from 1987 to 2000 would have been
the same as the survival observed for cases diagnosed from 1980 to 1987.

• Among stage-shifted cases, the shifted survival begins declining only once the lead
time has elapsed, i.e., at the time of clinical diagnosis. Thus, we explicitly disallow
negative survival benefit under screening.
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• The survival from clinical diagnosis without and survival with screening are
correlated by quantile: the quantile of the shifted survival within the local-regional
stage distribution is set to be equal to the quantile of the individual's original
distant-stage survival in its distribution.
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PARAMETER OVERVIEW

SUMMARY
This page describes the model inputs with which we have developed the FHCRC
prostate cancer microsimulation.

See the Assumption Overview for detailed assumptions associated with these model
inputs.

BACKGROUND

PARAMETER LISTING OVERVIEW
The FHCRC microsimulation comprises five fundamental modules.

Natural history and clinical presentation:

• All-cause mortality data are based on Berkeley life tables containing annual
mortality rates by birth cohort from birth year 1900 to 2000 by single year ages
from 0 to 119. We use data provided by National Cancer Institute (NCI) to subtract
out prostate cancer death rates from 1950 to 2000, yielding other cause (i.e., not
due to prostate cancer) death rates. We use these to generate age at other-cause
death.

• A cumulative distribution of age at asymptomatic onset is computed from the

results of Etzioni et al1 and is used to generate an age at disease onset for each
individual. If the age at onset precedes other-cause death, the individual becomes
asymptomatic during his lifetime.

• Stage transition rates from Cowen et al2 are used to generate clinical stage
durations from stage A1 through the end of stage D2.

• A year of birth distribution (uniform between 1895 and 1950) produces a multi-
cohort population including men aged 50 to 84 for all years between 1980 and
2000. See Figure 1.

• The distribution of the lifetime probability of clinical incidence is created using
Dev Can software provided by NCI. Inputs consist of SEER age-specific incidence
rates from 1973 to 1987. We assume that incidence prior to 1973 is approximated
by the rate observed in 1973 and that incidence after 1987 in the absence of PSA
screening is approximated by that observed in 1987. We then use Dev Can to
generate a cumulative distribution of age at clinical diagnosis in the absence of
other-cause death for each birth cohort in the model. This is used to generate the
clinical histories that correspond to the cases.

• The stage distribution at clinical presentation is based on SEER data. Prior to 1973
we assume the stage distribution to be approximated by that observed from 1973
to 1977. After 1987, we assume that the stage distribution in the absence of
screening is approximated by the distribution observed from 1983 to 1987.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Validations Overview
Key References

Fred Hutchinson CRC (PCSIM)
Parameter Overview

Page 86 of 201 All material © Copyright 2003-2009 CISNET



Figure 1. Illustration of birth years corresponding to target population for the ages
(50-84) and years (1980-2000) of interest.

Screening: PSA testing and biopsy follow-up:

• A schedule for PSA testing is assigned to each subject based on the PSA

dissemination model3 developed by IMS and provided to CISNET modelers by
our collaborators at NCI.

• The probability of follow-up biopsy after a positive PSA result is based on data

from Pinsky et al4, who estimated the likelihood of a biopsy within one year of a
PSA test by PSA level, age, and calendar year in the Prostate, Lung, Colorectal,
and Ovarian (PLCO) cancer screening trial.

• Biopsy accuracy (ability to detect existing disease) for men with stage A1 disease is
a function of the number of biopsy cores (4, 6, or more than 6). Based on an
extensive review of the literature, we have estimated that prior to 1990, 4-core
biopsies were standard, by 1995 6-core biopsies were standard, and by the early

2000s, 8- to 12-core biopsies were standard5. Following Presti et al6, we have
utilized 80% as the sensitivity of 6-core biopsies, 100% as the sensitivity for
extended-core biopsies, and 2/3 of 80% as the sensitivity for 4-core biopsies.

PSA growth:
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• The distribution of PSA levels beginning at age 45 serves as an anchor point for the
PSA growth curve. This is drawn from a lognormal distribution fit to the

distribution of PSAs for 40 to 49 year olds in Oesterling et al7.

• Mean annual PSA growth rate for healthy subjects is 3% percent per year from

Oesterling et al7.

• Within-person standard deviation of PSA level for healthy subjects is .

• Annual PSA growth rate after disease onset is modeled with an exponential

growth8. Specifics of the model are:

◦ Average annual percent change for distant-stage cases is 60%.

◦ Average annual percent change for local/regional-stage cases is 15%.

◦ Average annual percent change for latents is 6.5%.

◦ After disease onset, between-individual standard deviation of annual percent
change in PSA is 10% of mean growth rate.

◦ Individual-specific annual percent change in PSA is determined by quantile in
the population distribution of PSA growth rates where is the individual's
quantile in the initial stage distribution.

Survival: Survival inputs consist of relative survival curves from SEER, by age, stage,
and calendar year of diagnosis. Data from cases diagnosed between 1973 and 1987
are used, i.e., we end at the start of the PSA era. We split years of diagnosis into three
calendar periods: 1973-1977, 1987-1982, 1983-1987. For diagnoses prior to 1973 we
apply the 1973-1977 results and for diagnoses after 1987 we apply the 1983-1987
results. Thus we assume no improvement in age- and stage-specific survival from
clinical diagnosis during the PSA era, i.e., we do not model any increases in survival
that might be due to treatment changes.
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COMPONENT OVERVIEW

SUMMARY
For each major module of the microsimulation, implementation details are discussed in
this section.

OVERVIEW
The FHCRC microsimulation comprises five fundamental modules; natural history,
clinical diagnosis, PSA production, PSA screening, and survival. These modules are
outlined in the figure below, and implementation details for each are discussed in
broader detail in the Component Listing section. In addition, an output module collates
the model results and creates summary output reports.

Figure 1. Overview of the model components
along with the inputs and outputs of each.

COMPONENT LISTING
The FHCRC microsimulation comprises five fundamental modules. Implementation
details for each module are discussed in this section.

Natural history: This module generates disease histories and clinical histories that
are later used in the clinical diagnosis module.

Disease histories
Generates age at asymptomatic disease onset and ages at stage transitions. We assume
stage durations are distributed independently according to exponential distributions.
Disease stage is converted from American Urological Association (AUA) staging to

SEER historic stage using the mapping shown in the following table1.
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Clinical histories
Conditional on age of birth generate age of diagnosis in the absence of other-cause
death and (independently) generate age at other-cause death. Two types of clinical
histories result: (1) histories that include an age at clinical diagnosis prior to the age at
other-cause death and (2) histories that include only the age at other-cause death.

Clinical diagnosis:

Histories of the first type are matched to appropriate natural histories; for example, a
natural history that has a birth year of 1920, disease onset at age 45, and progression to
distant stage disease at age 60 might be matched to a clinical history from the
1920-1925 birth cohort that specifies local-regional diagnosis at age 58 in 1978. The
matched clinical histories are called “cases.”

Histories of the second type are paired with the remaining unmatched natural histories
so that, within each pair, the age at other-cause death in the clinical history precedes
the age at transition to distant stage disease in the natural history. This operation
effectively assumes that advanced prostate cancer is generally symptomatic and would
not remain undetected during the lifetime of the patient. Matched histories of this type
are labeled “latents.” The latents include both latent cases (those who have disease
onset but not clinical diagnosis within their lifetimes) and healthy men (those who
never have disease onset within their lifetimes—these men account for approximately
60% of the total population, in agreement with the autopsy studies).

Clinical histories and disease histories are processed in batches to control memory
usage. Each subset of disease histories is searched for matches with the clinical
histories in the current batch. Disease histories that do not match any of the current
clinical histories are retained for comparison with subsequent batches of clinical
histories. For each clinical history, one matching disease history is selected and
removed from further consideration. This process is repeated until all possible clinical
histories have been matched. Unmatched clinical and natural histories generally
constitute less than 1% of the total and are dropped from the population.

PSA production: Assigns PSA levels to each individual's PSA screening events. PSA
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growth rates differ for cancerous and non-cancerous states, and by cancerous disease
stage (local/regional or distant). Further details are on the Parameter Overview page.

Serial PSA screening: The screening module assigns screening schedules to subjects.

Screening dissemination is based on the results of Mariotto et al2, who used
retrospective data from the linked SEER -Medicare database and the National Health
Interview Survey.

Survival: This module applies only to cases as latents do not benefit from screening.
The module generates three ages at death: age at death due to prostate cancer without
screening (XXCaClin), age at death due to prostate cancer with screening (XXCaScrn),
and age at death due to causes other than prostate cancer (XXoc).

A subject's age at death in the absence of screening is the smaller of XXoc and
XXCaClin; his age at death in the presence of screening is the smaller of XXoc and the
larger of XXCaClin and XXCaScrn. Survival benefit is the difference between the age at
death in the absence of screening and the age at death in the presence of screening.

Additional details are available in the Screen Benefit Summary page which can be
accessed from the Output Overview page.

REFERENCES:
1 Etzioni R, Legler JM, Feuer EJ, Merrill RM, Cronin KA, Hankey BF “Cancer

Surveillance Series: Interpreting Trends in Prostate Cancer-Part III: Quantifying
the Link Between Population Prostate-Specific Antigen Testing and Recent
Declines in Prostate Cancer Mortality” in Journal of National Cancer Institute
1999; 91: 1033-1039

2 Mariotto A, Etzioni R, Krapcho M, Feuer EJ “Reconstructing prostate-specific antigen
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OUTPUT OVERVIEW

SUMMARY
This page describes the principal outputs of the FHCRC prostate cancer
microsimulation, and their importance in understanding prostate cancer trends in the
US population.

OVERVIEW
The major outputs of the FHCRC model are as follows:

• Age-specific and (age-adjusted) stage-specific incidence of prostate cancer after
1987 in the absence and presence of PSA testing.

• Mean sojourn time (time from disease onset to clinical diagnosis). This can be
computed for cases only, i.e., conditional on clinical diagnosis happening before
other-cause death, in which case we refer to it as a “conditional sojourn time,” or it
can be computed for all men with disease onset ignoring other-cause death, in
which case we refer to it an an “unconditional sojourn time.” The sojourn time
always starts at onset and ends at the date of clinical diagnosis.

• Mean lead time associated with PSA screening (time from screen to clinical
detection). Like the sojourn time, this can be computed for cases only, i.e.,
conditional on clinical diagnosis happening before other-cause death, in which
case we refer to it as a “conditional lead time,” or it can be computed for all screen-
detected individuals, ignoring other-cause death, in which case we refer to it as an
“unconditional lead time.” The lead time always starts at screen detection and
ends at the date of clinical diagnosis.

• Age-specific and age-adjusted prostate cancer mortality rates after 1987 in the
absence and presence of PSA screening. The difference between these two is our
measure of screening benefit (see Screen Benefit Computation).

OUTPUT LISTING
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RESULTS OVERVIEW

SUMMARY

OVERVIEW
Selected numerical and graphical results from the microsimulation are explained
below, including results for survival benefit, mortality and mortality reduction in the
presence of screening, incidence in the presence of screening, and estimates for the
mean lead-time.
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RESULTS LIST
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Survival benefit:
The model predicts a survival benefit from PSA screening. Screening and the
corresponding stage shift imply a relative risk of 0.48. The following figure shows the
relative survival among modeled cases with and without screening.

Mortality reduction:
In the absence of PSA testing, the model predicts that mortality due to prostate cancer
would have increased throughout the 1990s. Model results indicate that PSA testing
may be responsible for about half of the reduction in mortality.
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Note: For the years 1980 to 1987, the figure shows model validation; results from 1988
to 2000 are model results.

Stage-specific incidence of prostate cancer:
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Note 1: For the years 1980 to 1987, the figure shows model validation; results from 1988
to 2000 are model results.

Note 2: Stage-specific incidence is compared to a projection of incidence from SEER
that assumes that the stage distribution among unstaged cases is equivalent to stage
distribution among staged cases.

Sojourn and lead times associated with PSA testing:
Sojourn time is the length of time from preclinical disease onset to clinical diagnosis.
Lead time is the length of time by which diagnosis is advanced by screening, or the
difference between the age at screen diagnosis and age at diagnosis in the absence of
screening. Table 1 shows min, mean, and max sojourn and lead time estimates (in
years) from the model based on random samples of 1000 cases across 10 simulations.
Sojourn times are by age group at onset and lead times are by age group at screen
detection. Min (Max) times are the minimum (maximum) of the mean times across the
10 simulations, and is the mean number of subjects in each age group entering into
calculations
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VALIDATIONS OVERVIEW
Model development requires many input parameters where reliable source data may
not be available. This includes parameters describing disease natural history, the key
points of which are generally not observable. Our model results are calibrated to
prostate cancer incidence and mortality in the pre-PSA era and validated against data
on PSA test characteristics, sojourn and lead times, and the cumulative probability of
disease diagnosis in the presence of other-cause death.

Calibrations and Validations

• Validation of PSA sensitivity in a case-control study.

PSA sensitivity was validated by comparing results from the model to a

retrospective case-control study by Gann et al1. This study sampled men who had
enrolled in the Physicians' Health Study and had provided a blood sample at the
time of enrollment in 1980. Cases consisted of men diagnosed with prostate cancer
within 10 years after enrollment; controls were age-matched to cases and had not
been diagnosed with prostate cancer by the end of follow-up. The stored blood
samples were retrospectively assayed for PSA and the sensitivity of PSA to detect
disease diagnosed within years (where ranges from 1 to 10) was estimated. We
simulated this study design and computed corresponding estimates of screen
sensitivity by interval from test to clinical diagnosis.

• Validation of model incidence to age 85 in presence of other-cause death
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The CISNET model takes as input estimates of the cumulative probability of
clinical incidence in the absence of other-cause death. Disease cases consist of
individuals whose clinical diagnosis precedes their other-cause death. Thus, as a
validation exercise, we computed the model-generated probability of clinical
diagnosis by age 85 by birth cohort and compared it with that produced by Dev
Can software. This is shown below.

• Validation of sojourn and lead time estimates produced by the model.

Sojourn and lead times by birth cohort and calendar year of diagnosis, aggregated
across 50 million subjects, are summarized in the Results Overview. Sojourn time
is the time from disease onset to clinical diagnosis and is computed for cases by
age group at onset. Since the distribution of age at onset is the same for all birth
cohorts, any between-cohort differences in sojourn times result from differences in
clinical diagnosis rates. The lead time is the time from screen detection to clinical
diagnosis and is computed for screen-detected cases by age group at detection.

Model estimates of mean sojourn and lead times validate well with other studies.
Our overall, model-projected sojourn time is close to the estimate of 10 to 12 years
obtained by Etzioni et al and slightly lower than the estimate of 12.7 years

obtained by Draisma et al2. The estimated mean lead time among clinical cases is

between the 5 years obtained by Gann et al1 and Telesca et al3 and the 7 years

implied by Tsodikov et al4.

• Calibration of the model to prostate cancer incidence and mortality prior to the
PSA era.
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Calibration involves informal optimization in a high-dimensional parameter
space, which is aided by an internal linear interpolation algorithm that smooths
inputs provided by age group and calendar interval. In calibrating the model so
that it replicates prostate cancer incidence and mortality levels prior to the PSA
era, we vary the mean stage A1 duration, the minimum local-regional stage
duration, the precise stage distribution at clinical diagnosis, the PSA growth rates
for latents and for cases clinically diagnosed in distant stage, and the case-latent
ratio in the modeled population. No formal estimation procedure is conducted to
identify the best-fitting input values for these parameters. Regarding the case-
latent ratio, this is set originally in the clinical diagnosis module, which uses Dev
Can to compute the cumulative probability of clinical diagnosis—individuals with
clinical diagnosis in their lifetimes become cases and the rest of the population
become latents. Only 1 out of 12 latents is preserved for computational efficiency,
and the final model results upweight (i.e., inflate) any contributions from these
latents by a factor of 12. However, for model calibration purposes we have found
that a factor of 14 produces pre-PSA incidence and mortality rates that are
considerably closer to those observed. Hence the incidence and mortality plots in
the Results Overview use this as the latent inflation factor.

The calibrated model generates 5 million disease and screening histories and
aggregates the resulting age- and stage-specific incidence rates over birth cohorts
to produce results comparable to SEER rates, which are age-adjusted for the same
age groups.
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SEER
The Surveillance, Epidemiology, and End Results program of the NCI :

From the SEER website:
"The SEER Program of the NCI is the most authoritative source of information on
cancer incidence and survival in the United States. Information on more than 2.5
million cancer cases is included in the SEER database, and approximately 160,000 new
cases are accessioned each year within the SEER catchment areas. SEER data,
publications, and resources are available free of charge."
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USCB
The Bureau of the Census within the United States Department of Commerce
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NC HS
The National Center for Health Statistics is a division of the CDC.

From the NCHS website:
"NCHS is the Federal Government's principal vital and health statistics agency. Since
1960, when the National Office of Vital Statistics and the National Health Survey
merged to form NCHS, the agency has provided a wide variety of data with which to
monitor the Nation's health. Since then, NCHS has received several legislative
mandates and authorities.

"The NCHS is a part of the CDC, US Department of Health and Human Services. To
meet priority data needs for public health, NCHS works closely with other Federal
agencies as well as researchers and academic institutions.

"NCHS data systems include data on vital events as well as information on health
status, lifestyle and exposure to unhealthy influences, the onset and diagnosis of illness
and disability, and the use of health care. These data are used by policymakers in
Congress and the Administration, by medical researchers, and by others in the health
community."
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NC I
The National Cancer Institute, part of the NIH.

From the NCI website:
"The NCI is a component of the NIH, one of eight agencies that compose the Public
Health Service (PHS) in the US Department of Health and Human Services. The NCI,
established under the National Cancer Act of 1937, is the Federal Government's
principal agency for cancer research and training. The National Cancer Act of 1971
broadened the scope and responsibilities of the NCI and created the National Cancer
Program. Over the years, legislative amendments have maintained the NCI authorities
and responsibilities and added new information dissemination mandates as well as a
requirement to assess the incorporation of state-of-the-art cancer treatments into
clinical practice.

"The National Cancer Institute coordinates the National Cancer Program, which
conducts and supports research, training, health information dissemination, and other
programs with respect to the cause, diagnosis, prevention, and treatment of cancer,
rehabilitation from cancer, and the continuing care of cancer patients and the families
of cancer patients."
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DEV CAN
Dev Can takes cross-sectional counts of incident cases from the standard areas of the
Surveillance, Epidemiology, and End Results (SEER) Program conducted by the
National Cancer Institute, and mortality counts for the same areas from data collected
by the National Center for Health Statistics, and uses them to calculate incidence and
mortality rates using population estimates from census data for these areas. These rates
are converted to the probabilities of developing or dying from cancer for a hypothetical
population.

Software to perform the calculations is maintained and available free of charge from
NCI: http://srab.cancer.gov/devcan/devcan.html
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SCREEN BENEFIT SUMMARY

SUMMARY
This section discusses how the FHCRC prostate cancer model computes survival
benefit due to screening. The survival benefit computation compares a population
strategy of PSA screening and diagnostic follow-up with a baseline strategy reflecting
the level of diagnostic intervention in 1987, just prior to the start of the PSA era. This
does not include PSA screening but may include other interventions that lead to
detection of prostate cancer such as digital rectal exam (DRE) or trans-urethral
resection of the prostate (TURP). We do not explicitly consider changes over time in
these interventions.

OVERVIEW
Of screened subjects, only Cases (those who would have been clinically diagnosed in
the absence of PSA) receive screening benefits. The primary mechanism to achieve
benefit is by a shift from distant stage to regional or local-regional stage.

The model does not link pre-diagnosis progression rates with post-diagnosis
prognosis. Thus it does not reflect any length bias that may be present in population
screening.

Lead time bias is not an issue in our model because we generate survival beginning at
clinical diagnosis in both the absence and presence of screening. Thus, if a case is
shifted by screening from a distant to a local-regional stage, then his new (local-
regional) survival time begins from his date of original clinical diagnosis.

BENEFIT: INPUT OR OUTPUT?
Individual screening benefit is an output calculated from three important parameters
generated in the model:

◦ Age-at-death-due-to-clinically-diagnosed-disease (XXCaClin)

◦ Age-at-death-due-to-screen-diagnosed-disease (XXCaScrn)

◦ Death-due-to-other-causes (XXoc)

The screening benefit calculation looks like this:

If XXCaClin XXCaClin and XXoc XXCaClin; otherwise, if XXoc
Population screening benefit is estimated from the disease-specific mortality curves
generated by the model in the absence and presence of screening. For any given year,
this is captured by the estimated percentage of the mortality decline attributable to
PSA screening, given by , where and denote
mortality in the absence and presence of PSA and is observed mortality.
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BENEFIT: EXPLICIT OR IMPLICIT?
Benefit arises from the difference between explicitly modeled survival times for Cases
with and without screening. Population screening benefit is estimated from the
disease-specific mortality curves generated by the model in the absence and presence
of screening. For any given year, this is captured by the estimated percentage of the
mortality decline attributable to PSA screening, given by ,
where and denote mortality in the absence and presence of PSA and is
observed mortality.

ATTRIBUTES DRIVING SURVIVAL
We use survival curves from SEER for local, regional, and distant stage disease. The
lookup parameters are year, age, and stage at diagnosis. The same tables are used for
both clinical- and screened-detected subjects.

Clinical survival:

• Stage at clinical diagnosis

• Age at clinical diagnosis

• Calendar year periods of clinical diagnosis: 1973-1977 (used for diagnoses prior to
1973), 1978-1982, and 1983-1987 (used for diagnoses after 1987)

Screen survival:

• Stage at screen diagnosis

• Age at screen diagnosis

ATTRIBUTES CHANGED BY SCREENING
Age and stage at diagnosis may be changed by screening and may be used to
recalculate disease-specific survival.

CORRELATION AND LINKING
The clinical and screen-diagnosed survivals for a given subject are computed at the
same quantile of their respective survival distributions.

For the baseline model, benefit is not linked to any other attributes of the natural
history model.

ISSUES AND ARTIFACTS
Individuals may not die of prostate cancer during their lead time or sojourn time. This
is enforced by beginning disease-specific survival times at the original date of clinical
diagnosis, whether in the absence or presence of screening. We refer to this as “lead
time delay”; the survival under screening is delayed until the date of clinical diagnosis.

Latents (individuals with no clinical detection during their lifetimes) do by definition
die of other causes within their sojourn and/or lead time.
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OTHER ISSUES
What if XXCaScrn is less than XXCaClin?
It can happen that, by “luck of the draw”, a case is given an age-at-death-due-to-
screened-PCa that is less than age-at-death-due-to-clinical-PCa. In this case, we move
XXCaScrn to be at the same date as XXCaClin. This is a relatively rare occurrence
because of the lead time delay and the linkage by quantile of the screen- and clinically-
diagnosed survival times.
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CD C
The Centers for Disease Control and Prevention, an agency of the US Department of
Health and Human Services.

From the CDC website:
"The Centers for Disease Control and Prevention (CDC) is recognized as the lead
federal agency for protecting the health and safety of people—at home and abroad,
providing credible information to enhance health decisions, and promoting health
through strong partnerships. CDC serves as the national focus for developing and
applying disease prevention and control, environmental health, and health promotion
and education activities designed to improve the health of the people of the United
States.

"CDC, located in Atlanta, Georgia, USA, is an agency of the US Department of Health
and Human Services. Dr. Jeffrey P. Koplan is the Director."
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DHHS
The United States Department of Health and Human Services comprises the following
agencies:

• Office of the Secretary of Health and Human Services (OS)

• Administration for Children and Families (ACF)

• Administration on Aging (AOA)

• Agency for Healthcare Research and Quality (AHRQ)

• Agency for Toxic Substances and Disease Registry (ATSDR)

• Centers for Disease Control and Prevention (CDC)

• Centers for Medicare & Medicaid Services (CMS)

• Food and Drug Administration (FDA)

• Health Resources and Services Administration (HRSA)

• Indian Health Service (IHS)

• National Institutes of Health (NIH)

• Program Support Center (PSC)

• Substance Abuse and Mental Health Services Administration (SAMHSA)
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NI H
The National Institutes of Health is an agency of the US Department of Health and
Human Services.

From the NIH website:
"Begun as a one-room Laboratory of Hygiene in 1887, the NIH today is one of the
world's foremost medical research centers, and the Federal focal point for medical
research in the U.S.
"The NIH mission is to uncover new knowledge that will lead to better health for
everyone. NIH works toward that mission by:

• conducting research in its own laboratories;

• supporting the research of non-Federal scientists in universities, medical schools,
hospitals, and research institutions throughout the country and abroad;

• helping in the training of research investigators; and

• fostering communication of medical information.

"The NIH is one of eight health agencies of the Public Health Services which, in turn, is
part of the US Department of Health and Human Services. Comprising 27 separate
components, mainly Institutes and Centers, NIH has 75 buildings on more than 300
acres in Bethesda, MD. From a total of about $300 in 1887, the NIH budget has grown
to more than $20.3 billion in 2001."
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UNIVERSITY OF MICHIGAN
Important note: This document will be updated periodically. The most current
version is available at http://cisnet.cancer.gov/profiles. Note that unlike most PDF
documents, the CISNET model profiles are not suitable for printing as they are not
typically written or read in sequential fashion.

We recommend you let your interests guide you through this document, using the
navigation tree as a general guide to the content available.

The intent of this document is to provide the interested reader with insight into
ongoing research. Model parameters, structure, and results contained herein
should be considered representative but preliminary in nature.

We encourage interested readers to contact the contributors for further
information.

Go directly to the: Reader's Guide.
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READERS GUIDE
Core Profile Documentation
These topics will provide an overview of the model without the burden of detail. Each
can be read in about 5-10 minutes. Each contains links to more detailed information if
required.

Model Purpose
This document describes the primary purpose of the model.

Model Overview
This document describes the primary aims and general purposes of this modeling
effort.

Assumption Overview
An overview of the basic assumptions inherent in this model.

Parameter Overview
Describes the basic parameter set used to inform the model, more detailed
information is available for each specific parameter.

Component Overview
A description of the basic computational building blocks (components) of the model.

Output Overview
Definitons and methodologies for the basic model outputs.

Results Overview
A guide to the results obtained from the model.

Key References
A list of references used in the development of the model.

Further Reading
These topics will provide a intermediate level view of the model. Consider these
documents if you are interested gaining in a working knowledge of the model, its
inputs and outputs.
Advanced Reading
These topics denote more detailed documentation about specific and important aspects
of the model structure
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MODEL PURPOSE

SUMMARY
This page summarizes the purposes for which this model was developed.

PURPOSE
The model provides a quantitative link between dissemination of cancer control
processes and their impact on population and public health measures of cancer
incidence, survival and mortality. Its purpose is to unravel the myriad causes and
relationships that underlie recent trends in prostate cancer incidence and mortality, to
quantify the relationships in terms of model parameters, and to enable researchers to
perform inference on these parameters by means of confidence intervals and
hypothesis tests.

The model provides tools by which national population and cancer registry data may
be analyzed, so that the population impact of cancer control processes may be
understood and predicted. It exists that researchers might predict short- and long-term
trends in national incidence and mortality under various scenarios; might analyze
racial disparities as they pertain to factors associated with trends in treatment, survival,
incidence and mortality; and might determine and evaluate optimal screening
strategies.

A particular goal of this model is to enable researchers to determine in what way, if at
all, PSA screening of asymptomatic men is linked to the recent decline in prostate
cancer mortality. In fact, the model has already generated predictions for prostate
cancer incidence and mortality under current PSA utilization patterns, and for the
baseline case of no PSA screening. The latter prediction is counterfactual, in that it
expresses what incidence and mortality would have been during the years 1970-2000 if
there had been no PSA screening, other things being equal. Thus it yields an estimate
of the differences in incidence and mortality that are purely associated with PSA
utilization.
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MODEL OVERVIEW

SUMMARY
This document provides an overview of the modeling effort, and describes the model
itself in general terms.

PURPOSE
This is a model of prostate cancer incidence and mortality. It was developed to analyze
national population and cancer registry data. It is used to understand, predict and
optimize the population impact of cancer control processes in prostate cancer. See
Model Purpose for more details.

BACKGROUND
Excluding skin cancers, prostate cancer is the most common cancer in American men.
It claims over 40,000 lives annually, ten percent of cancer deaths among men, and is

second only to lung cancer as a cause of cancer deaths1. Progressive prostate cancer is a
serious disease. Thousands of men suffer pain and complications and die prematurely
from progressing tumors.

Management and control of prostate cancer is a significant public health problem. For
more than a decade since the introduction of PSA testing in the late 80s, the incidence
rates of newly diagnosed prostate cancers have seen a dramatic increase to over

190,000 cases in early 90s, followed by an equally dramatic decline2 (Figure_1). At the
same time, mortality slowly increased from the 70s to the early 90s, and has been

declining since then3 PSA screening has spread through the population because of the
hope that it ultimately may reduce mortality. But the mere fact that screens can detect
organ-confined prostate cancer does not in itself constitute a sufficient ground for their
implementation. Screening cannot be justified unless patients who are screened
actually have improved outcomes, and this has not yet been shown.

To make appropriate decisions regarding treatment and public health policy, we must
understand the causes of these trends. To do so, models are needed that can unravel
and disentangle all the factors behind the observed population trends, including length
bias, overdiagnosis, early detection of cases that would become clinical, shifts in stage
and grade of cancer associated with early detection, and other possible factors, such as
a change in the survival curve within stage and grade following the advent of PSA
screening.

The model reported here has several distinctive features that meet this challenge. These
include:

• Estimation from population data instead of from screening trial data.

• A flexible regression framework, accomodating explicit adjustments for
differences in screening and treatment utilization patterns.

• Analytic, rather than simulation-based, procedures for estimation and prediction.

• The identification of within-stage shift as a factor affecting survival and mortality.
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• Confidence intervals and tests of statistical hypotheses for all model parameters.

• A general structure, making the model applicable to cancer sites other than the
prostate.

Before describing the "guts" of the model, we briefly discuss these features.

Estimation from population data.
The parameters in our model are estimated from population databases such as SEER,
not from screening trial data. This mode of estimation is possible because we
incorporate random PSA schedules into the estimation procedure. This approach is
appropriate, since the focus of CISNET is on population trends in incidence and
mortality. To measure such trends, a model must unravel and disentangle a set of
competing risks and confounded effects, including length bias, overdiagnosis,
advancement of diagnosis due to screening, stage shift due to early detection, and
other possible effects, such as within-stage shift. No randomized trial for which data
are currently available has been designed to measure all these effects. To model such
effects, it is critical that methods be developed that can exploit population data for
estimation. Our model does this.

Since our estimation procedure is based on population databases, we are able to exploit
the wealth of information available from these databases. The consequences for
precision and power are substantial, since population databases are typically much
larger than the number of individuals participating in a screening trial. Increased
power enables us to obtain reliable estimates on a potentially larger set of model
parameters than would be possible were the estimation based on screening trials.

A flexible regression framework.
The model is constructed within a flexible framework that uses concepts of survival
analysis, yet is not limited to the standard Cox proportional hazard model. This
framework accomodates adjustments for variable screening and treatment utilization
patterns through built-in lead-time, length-bias and stage- and within-stage shift, all of
which may affect survival. This framework allows the reseacher to derive realistic
estimates of mortality through joint modeling of incidence and survival in a dynamic
population environment. For example, clinical covariates being equal, the model
generally would provide different survival estimates for subjects from low and high
PSA utilization areas.

Since this regression framework is applied to population data, there is no need to
perform additional calibration of model predictions after parameter estimation. All
adjustments of the model are explicitly built into the fitting procedure. In case the fit is
unsatisfactory, this framework naturally leads the researcher or policymaker to directly
examine model assumptions and parameter values. Thus the framework is flexible,
allowing reviewers, researchers outside the development team, and policymakers to
analyze and evaluate the model, creating an environment conducive to further model
improvement.

Analytic procedures for estimation and prediction.
A second distinctive feature of our model is that it is analytic in all its components. We
do not use simulation or stochastic approximation either to fit the model or to predict
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from it. This fact has two consequences, one pertaining to ease of model fitting and
prediction, one pertaining to model interpretation.

A fit or prediction run for our model takes a few minutes on a standard PC, much less
time than if we relied on simulation. This results in a quick feedback and consequently
allows interactive dialog between the model and the user. This feature is particularly
important for providing a policy maker with a tool to quickly evaluate a number of
cancer control hypotheses in an interactive environment. We have already developed a
working prototype software package (SCANS, Self-Consistency Analysis of
Surveillance) for Windows.

In addition to the practical advantage of speed, the analytic nature of our model means
that it is transparent. The parameters can be directly interpreted in terms of processes
of interest, so that the model itself is in no way a "black box."

Within-stage shift.
It is customary to explain survival and mortality differences associated with PSA
screening by shifts in stage and grade of the cancer associated with the lead time
between screen diagnosis and the time at which an individual would have been
diagnosed clinically. Under the current model, however, we find evidence of a survival
shift within stage, associated with PSA dissemination. For more information, see
Within Stage Shift.

Additional distinctive features of this model.

We provide confidence intervals and tests of statistical hypotheses for all estimated
model parameters. Thus, the user has an idea as to the significance of model findings.

While the model is applied to prostate cancer, its structure is general and open to
immediate application to other diseases.

MODEL DESCRIPTION
The model provides a means by which parameters may be estimated that enable us to
explain and predict trends in incidence, survival and mortality. As suggested in the
Background section above, the model is probabilistic -- yielding p-values and
confidence intervals -- and is accompanied by procedures that permit estimation from
the same kind of data that we are seeking to predict and explain, namely, large
population databases.

Model Assumptions
Please see Assumption Overview for the assumptions on which the model is based.

Model Inputs
Please see Parameter Overview for a list of model inputs.

Model Outputs
The model yields estimates of a set of parameters that together constitute a
comprehensive model for prostate cancer incidence, survival, and mortality.
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These parameters govern such basic characteristics of the model as age at tumor onset,
sojourn time, lead time, overdiagnosis, delay time, sensitivity of the PSA test, and the
correlation between the age at tumor onset and the sojourn time. From these basic
characteristics follow estimates of incidence a function of calendar year, age, stage, and
grade; survival as a function of stage, grade, and delay time; and mortality by calendar
year and age. From these parameters we finally derive estimates of the effect of PSA
screening on prostate cancer incidence and mortality.

For more information, see Output Overview.

Model Limitations
Since the data are observational, we do not have the benefit of complete elimination of
confounders, as is possible in a well-conducted clinical trial. The urgent need to gain
understanding of the processes, however, and the long follow-up time required by a
screening trial, do not afford us the luxury of waiting for experimental results.

Because the model is based on past data, its generalizability to the future may be
limited.

The current version of the model does not explicitly describe PSA growth.

CONTRIBUTORS
We gratefully acknowledge the collaboration of the following individuals.

Dr. Ray Merrill of the Department of Health Sciences, Brigham Young University,
helped in model building, interpretation and prediction of national prostate cancer
trends.

Dr. Marco Zaider, Head of Brachytherapy at the Memorial Sloan-Kettering Cancer
Center, brought his expertise in prostate cancer treatment to the project. He assisted us
in analyzing and interpreting clinical data, providing a link between screening
strategies and prostate cancer post-treatment survival.

Dr. Gilda Garibotti worked on computer implementation of the profile information
matrix methodology in the survival analysis module. She provided advice on software
development and implementation of survival analysis machinery in the population
model.

Dr. Aniko Szabo provided help on software development and implementation of
methods and population models. She especially provided advice on the integration of
the model software into the population software shell, and helped in testing computer
code that implements extended population models.
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ASSUMPTION OVERVIEW

SUMMARY
In this section we summarize the main assumptions on which the model is based.

BACKGROUND
Researchers generally agree that prostate cancer is the result of an irreversible
transition of the disease through three consecutive stages: the disease free stage, the
pre-clinical stage and the clinical stage. This three-stage model entails the following
potential time points in an individual's life: birth, onset of prostate cancer, time of
clinical diagnosis, time of death due to prostate cancer, and alternatively the time of
death due to a competing risk.

Although this model may be accurate as far as it goes, it does not capture the processes
currently affecting incidence, survival and mortality. The dissemination of TURP and,
more drastically, the dissemination of PSA testing have made the picture more
complicated, because both TURP and the PSA test can advance the diagnosis of
prostate cancer.

In addition, it has customarily been believed that stage shift is the only reasonable
explanation for any benefit derived from early detection. We do not make this
assumption, and in fact have found evidence to the contrary (see Introduce Within
Stage Shift).

For both these reasons, a more complex set of assumptions must be spelled out.

ASSUMPTION LISTING
Tumor onset (See Age At Tumor Onset for details.)

• The baseline hazard of tumor onset may depend on age.

• The hazard of tumor onset may depend on calendar year.

• The effect of calendar year on the hazard of tumor onset is multiplicative.

Sojourn Time (See Sojourn Time Distribution for details.)

• Baseline Sojourn Time may depend on age.

• The hazard function associated with baseline Sojourn Time may include a
multiplicative trend in calendar time.

• Sojourn Time may depend on age at tumor onset.

• Given the time of tumor onset, Sojourn Time does not depend on the cancer
screening process.

Delay Time. The distribution of the duration of the latent_disease_stage is an average
over random patterns of all possible modes by which the disease can be detected. (See
Incidence Model for details.) These include

• Clinical diagnosis through symptoms
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• PSA screening

• Transurethral resection of the prostate (TURP).

Screening tests occur randomly in time, subject to the following assumptions (see
PSAscreening Model for details):

• Age at first PSA test has a distribution (alternatively, hazard function) that
depends both on age and calendar time.

• The times between consecutive PSA tests occur as a non-homogeneous Poisson
process, with an intensity that depends on age and calendar year.

• The sensitivity of the screening test is an increasing function of time since tumor
onset.

Survival time after diagnosis follows a semiparametric regression model. (See
Survival Component for details.)

Mortality in the population can be adequately modeled by combining information
from the incidence and survival models. (See Mortality Model for details.)

Within-Stage Differences in Prognosis. We allow the possibility that stage and grade
at diagnosis are not the only variables associated with a patient's prognosis for
survival. (See Introduce Within Stage Shift.)
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PARAMETER OVERVIEW

SUMMARY
This document lists and defines the inputs to the modeling algorithm.

BACKGROUND
The parameters discussed on this page are parameters of a model, not of a population.
Thus, in this context, the term "parameter" has an entirely different meaning from the
classical statistical use of the term.

In classical statistics, a parameter is a number or set of numbers that characterize a
population. Typically, we estimate parameters by drawing a sample from the
population, measuring a variable or set of variables on each individual in that sample,
and using these measurements (i.e., using a set of data) as input to an estimation
algorithm. The estimation algorithm produces parameter estimates as output. These
may be point estimates, interval estimates, p-values, or higher-dimensional objects
such as densities or cumulative distribution functions.

In the current context, however, "parameter" does not refer to a characteristic of the
population but rather to any input to the modeling algorithm. Thus, even a set of
measurements made on each individual in a sample drawn from the population are
considered "parameters" if they are used as input to the modeling algorithm.

PARAMETER LISTING OVERVIEW
The inputs to the model (also called the "model parameters," as explained in the
Background section of this page) consist of population data as well as "given"
parameters and distributions provided by the National Cancer Institute (NCI). These
include:

• The distribution of PSA utilization in the population. This distribution is based on
an algorithm that can be used to simulate life histories of the times that individual
men undergo PSA tests. For more information see base Case PSA.

• Surveillance, Epidemiology and End Results (SEER) data on every individual
diagnosed with prostate cancer in nine areas of the United States (San Francisco-
Oakland, Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah, and
Atlanta), more than 350,000 cases (SEER_Medicare). The data include tumor
characteristics as well as standard follow-up and outcome variables. In particular,
for each age (over 50) and each year the number of new prostate cancer cases

is derived and "fed" to the model. For details see Likelihood In The
Incidence Model.

• Population count files belonging to the same areas from which the prostate cancer
case data were obtained. From this source the number of people at risk for prostate
cancer for each age and each year is derived, , and "fed" into the model.
For details see Likelihood In The Incidence Model.

• Age distribution in the U.S. population in the year 2000 for men over 50.

• Risk of death from other causes, derived from the Human Mortality Database1.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

University of Michigan
Parameter Overview

Page 127 of 201 All material © Copyright 2003-2009 CISNET



REFERENCES:
1 Wilmoth, John R. (Director), Shkolnikov, Vladimir Shkolnikov (Co-Director),

“Human Mortality Database (HMD).” 2003;
University of Michigan

Parameter Overview
References:

Page 128 of 201 All material © Copyright 2003-2009 CISNET



COMPONENT OVERVIEW

SUMMARY
This document outlines the analytic components of which the model is constructed.

OVERVIEW
The model is composed of three distinct components by which predictions and
estimates are made based on population data.

The Incidence Component takes population data as input and yields estimates and
predictions of prostate cancer incidence by calendar year and age. In addition it yields
predictions both in the presence and in the absence of PSA testing, thereby yielding an
estimate of the difference in prostate cancer incidence that is due to the presence of
PSA testing.

The Survival Component also takes population data as input. It yields a model for the
relationship between a set of covariates (including age, year of diagnosis, cancer stage
and tumor grade) and a man's survival prognosis.

The Mortality Component combines the Incidence Component and the Survival
Component. It yields estimates and predictions of prostate cancer mortality by
calendar year, age, and presence or absence of PSA testing. Thus, similar to the
Incidence Component, the Mortality Component yields an estimate of the difference in
prostate cancer mortality that is due to the presence of PSA testing.

COMPONENT LISTING
Incidence Component
Survival Component
Mortality Component
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OUTPUT OVERVIEW

SUMMARY
This page lists and describes the statistics computed by the model, the parameters for
which these statistics serve as estimates, and the predictions available from the model.

OVERVIEW
The model yields estimates of a set of parameters (some one-dimensional, some multi-
or high-dimensional) that together constitute a comprehensive model for prostate
cancer incidence, survival, and mortality.

OUTPUT LISTING

• Prostate cancer incidence as a function of calendar year, age, and presence or
absence of PSA testing. (See Incidence Figure.)

• Survival as a function of calendar year, age, stage, grade, and screening schedule.
(See Survival Component.)

• Mortality by calendar year, age, and presence or absence of PSA testing. (See
Mortality Component.)

• Mean lead time as a function of birth cohort. (See define Lead Time and Results
Overdiagnosis Lead Time.)

• Overdiagnosis as a function of birth cohort. (See define Overdiagnosis and Results
Overdiagnosis Lead Time.)

• Delay time as a function of calendar year and age, with and without PSA testing.
(The latter is a counterfactual scenario; see define Delay Time and Mean Posterior
Delay Time Marginal Incidence Model.)

• Relationship between delay time and survival. (See Within Stage Shift By Delay
Time.) Note that this estimate entails differences in survival (or prognosis)
associated with differences in screening schedule, even after adjustment has been
made for stage and grade of cancer. We call this phenomenon within-stage shift.
To our knowledge this phenomenon has not been discovered or quantified by any
other research group.

• Estimates of the differences in incidence and mortality that are due to PSA
screening. These estimates are based on a scenario in which incidence and
mortality are estimated in the counterfactual case of no PSA screening. (See results
Age Adjusted Incidence Mortality.)

• Parameters governing the distribution of baseline sojourn time. (See Incidence
Model, Analysis Of Population Data and Table_1.)

• Parameters governing age at tumor onset. (See Incidence Model, Analysis Of
Population Data, and Table_1.)

• Sensitivity of the PSA test. This was estimated at 100% by the model, but can be set
to zero to predict what incidence would be in the absence of PSA. (See Modeling
Cancer Detection Through Screening and Analysis Of Population Data.)

• Correlation between age at onset and sojourn time. (This was found to be
negligible, and removed from the model; see Analysis Of Population Data).
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RESULTS OVERVIEW

SUMMARY
This page lists discoveries that have been made through the current modeling effort.

OVERVIEW
The model constitutes a framework for analysis of population databases. Within this
framework, and by means of its estimation procedures, researchers obtain estimates of
parameters that matter in the quest to understand the causes and processes of change
in prostate cancer incidence, survival, and mortality. These parameters represent
factors that either cause, or are associated with, differences in the outcomes that
researchers and the public ultimately care about: survival prognosis for those
diagnosed with prostate cancer, and mortality in the population due to prostate cancer.

RESULTS LIST

• resultsAgeAdjustedIncidenceMortality, and consequently

• Estimation of the difference in incidence that is due to PSA testing.

• resultsAgeAdjustedIncidenceMortality, and consequently

• Estimation of the difference in mortality that is due to PSA testing.
For more information on results regarding incidence and mortality, see results
Age Adjusted Incidence Mortality.

• Estimation of Delay Time without using survival data. This represents an
independent significant prognostic factor for post-treatment survival, particularly
for cancers in the localized-regional stage. See Mean Posterior Delay Time
Marginal Incidence Model.

• Identification of differences in survival associated with differences in Delay Time.
The changes in survival associated with early detection have been customarily
modeled by stage shift. We have found, however, that, even after stage has been
accounted for, differences in delay time (the time from onset of cancer until
detection) are associated with differences in survival. See Within Stage Shift By
Delay Time.

• Publications accepted or submitted (click on the link for a list).
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FIGURE_1

Figure_1. Prostate cancer incidence and mortality rates by year of diagnosis age-adjusted to
US population in year 2000. Data from the Surveillance, Epidemiology and End Results
(SEER) database, National Cancer Institute.
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PARAMETER
In this model profile, the term "parameter" is used in the classical statistical sense. In
this sense a parameter is a number or set of numbers that characterize a population. A
primary object of classical statistics is to use data, also referred to as a sample, to
estimate the parameters of a population. This sense of the term is entirely different
from the sense referred to by the phrase Parameter Overview. Please see the
Background section of that document for an explanation of the difference between the
two senses of the word.

For information on the particular parameters estimated by the model, see Output
Overview.
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WITHIN STAGE SHIFT
The effects of over diagnosis, Length Bias and Lead Time result in remarkable changes
in the meaning of clinical covariates at diagnosis. With the introduction of screening,
however, the prognostic value of such covariates is modified. The prognosis for cases
diagnosed in the screening era is markedly different as compared to cancer cases from
unscreened populations. This effect remains unexplained even when survival is
adjusted for stage and grade (Figure_2). As PSA screening is intensified with the
dissemination of the test in the U.S. population, survival in localized stage is
improving while survival in distant stage is worsening as discussed above. A similar
effect in the localized stage might be found before PSA was introduced, in association
with early detection through TURPs. In contrast to the situation in a clinical trial,
straightforward conditioning on clinical covariates in the analysis of population data
may be misleading, and special care is needed to adjust for screening patterns in the
population. For the same reason, the results of clinical trials are not immediately
generalizable to the population setting.
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DEFINE ONSET
Onset is defined as the beginning of prostate cancer in an individual. Note that the
time of onset for an individual cannot be directly determined.
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DEFINE TURP
Transurethral resection of the prostate (TURP) is a surgical procedure performed to
treat benign prostate hyperplasia (BPH) and urinary obstruction symptoms.
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INTRODUCE WITHIN STAGE SHIFT
See Delay_Time_Approach for modeling of within-stage shift.
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AGE AT TUMOR ONSET
Age at tumor onset

We use a Weibull distribution for the baseline age at tumor onset. Its baseline hazard
function is given by

where is the age past 50. In the above expression Weibull distribution is
parameterized through the mean and the shape parameter related to the
coefficient of variation

Included in the model is a trend function that depends on calendar time. This
function exerts a multiplicative effect on the baseline hazard so that the hazard of
tumor onset depends on age and birth cohort

The trend is used to model possible changes in the pattern of the disease onset with
calendar time due to unspecified factors such as changes in diet, environment and
biology of the disease. Note that it is hardly possible to give a biological definition for
the tumor onset. From the modelling prospective, tumor onset represents the earliest
point in time where cancer could be detected by screening. For this reason changes in
detection technology, practice of biopsies for the disease following a positive screens
and other diagnostics management issues may also affect the definition. Changes in
such practices that are not modelled in a mechanistic fashion are thought of as part of
the trend function. We used truncated linear trend functions in data analysis.

(This is extracted from an early draft of1.)
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DEFINE SOJOURN TIME
Sojourn time is defined as the potential (other risks removed) time from tumor onset
to its clinical diagnosis. Thus it is the duration of the preclinical stage in the absence of
screening. We speak of the sojourn time distribution even for individuals who receive
screenings. In this way we model the competing risks of clinical and screening
diagnosis.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

University of Michigan
define Sojourn Time

Page 139 of 201 All material © Copyright 2003-2009 CISNET



SOJOURN TIME DISTRIBUTION
The sojourn time distribution.
Sojourn time is defined as the potential (other risks removed) time from tumor onset to
its clinical diagnosis. A Weibull distribution with mean and shape parameter
is used to model the baseline sojourn time hazard. Two effects can be imposed on the
baseline sojourn time distribution:

• Age. Sojourn time may be affected by age for various reasons. Tumor growth
biology may depend on the age of the person. Also, tumors developing at a
younger age may represent a special subtype that can have different progression
characteristics. To model age dependency, the mean sojourn time is regressed on
the age at tumor onset as , where the parameter models the
correlation between the sojourn time and the onset time.

• Secular trend. Sojourn time may be affected by changes in the practice of cancer
detection other than the studied modality of screening. Most notably, before PSA
was introduced, prostate cancer was often detected as a result of surgery

(Transurethral Resection of the Prostate, TURP) for benign prostate disorders1.
Other changes in prostate cancer awareness in the population and detection
practices may have contributed to a trend of increasing incidence observed before
PSA was introduced. These trends in calendar time are modelled using a
multiplicative trend function acting on the baseline sojourn time hazard.

We have the sojourn time hazard in the form

where is the birth year, is age (past 50) at tumor onset, is time since tumor onset,
and is Weibull hazard with shape parameter and mean
.

REFERENCES:
1 Merrill, R.M., Feuer, E. J., Warren, J. L. , Schussler, N. , Stephensons, R. A. “Role of

transurethral resection of the prostate in population-based prostate cancer
incidence rates” in American Journal of Epidemiology 1999; 150: 8: 848-860
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DEFINE DELAY TIME
Delay time is defined as the duration of the latent_disease_stage, i.e., the time from
onset until detection of cancer by any means, including PSA screening or clinical
detection.
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DEFINE LATENT DISEASE STAGE
The latent disease stage is defined as the time when an individual has cancer but the
cancer has not yet been detected by any means.
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INCIDENCE MODEL

INCIDENCE MODEL
We use the classical three-stage model of the natural history of a chronic disease1.
Prostate cancer is a result of an irreversible transition of the disease through three
consecutive stages: disease free stage, pre-clinical stage and clinical stage. The time
spent in disease-free stage is characterized by the age (a random variable) at onset of
the disease. In the pre-clinical stage disease is asymptomatic and can be detected by a
screening test. The duration of the preclinical stage in the absence of screening (a
random variable) is termed the sojourn time. If undetected by screening, the disease
can either reach the clinical stage or, alternatively, the event of clinical diagnosis is
precluded by a competing risk other than the disease of interest.

The distribution of any random duration can be specified by one of the following
functions: a hazard function (h.f., or ), a survival function (s.f., ), a distribution
function (d.f., ), or a probability density function (p.d.f., ). Dependent on the
situation, we will use the most convenient representation. Denote age by , calendar
year by , year of birth by , and time since tumor onset by . We will follow the above
notation unless noted otherwise. Prostate cancer incidence by age and year can
be written as where is the h.f. for cancer diagnosis for the -birth
cohort. Clearly,

The functions and are in fact represented by a fairly complex mixture model. It is
clear that cancer incidence is a convolution of two generally dependent survival times:
age at tumor onset and duration of the latent disease stage .

where is a conditional p.d.f. of , and is the p.d.f. of . Generally,
is an average over random patterns of screening operating in the population. It is clear
that is a result of two dependent competing risks: the one associated with natural
clinical diagnosis through symptoms and the one associated with detection through
screening. Dependency between the two risks is a consequence of natural detection
and screen-based detection risks sharing the same disease development process in the
subject. This dependency is modelled through the concept of shared mixed effect

(frailty) Hougaard2, represented by Y . Conditional independence of potential risks of
natural and screen-based detection, given Y gives
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where is the s.f. of time to clinical diagnosis (CDx) in the absence of screening (the
sojourn time), and is the s.f. of the potential time to screen-based diagnosis (SDx).
Note, that in our model corresponds to a continuous distribution as it is
represented as a continuous mixture over random screening schedules in the
population. Since incidence of prostate cancer before the age of 50 is negligible, we will
associate the birth year with the year in which the man turns 50. Weibull distribution
with mean and the shape parameter is used for the baseline age at tumor onset.
Weibull distribution with mean and shape parameter is used to model the
baseline sojourn time hazard . Two effects are imposed on the baseline sojourn
time distribution, age dependence and a secular trend. To model age dependency, the
mean sojourn time is regressed on the age at tumor onset y as , where
the parameter , models correlation between the sojourn time and the onset time.
Secular trend models alterations in the practice of cancer detection other than the
studied modality of screening. Most notably, in the pre-PSA era, many prostate cancers
were incidentally detected through TURP
3. Secular trend is introduced as a multiplicative effect

REFERENCES:
1 Zelen, M., Feinleib, M. “On the theory of screening for chronic diseases” in

Biometrika 1969; 56: : 601-614
2 Hougaard, P. “Frailty models for survival data” in Lifetime Data Analysis 1996; 1: :

255–274
3 Merrill, R.M., Feuer, E. J., Warren, J. L. , Schussler, N. , Stephensons, R. A. “Role of

transurethral resection of the prostate in population-based prostate cancer
incidence rates” in American Journal of Epidemiology 1999; 150: 8: 848-860

University of Michigan
Incidence Model

References:

Page 144 of 201 All material © Copyright 2003-2009 CISNET



PSASCREENING MODEL
The PSA screening model

The National Cancer Institute's Statistical Research and Applications Branch has
devefloped a simulator for PSA schedules for arbitrary birth cohorts in the 1916--2000

box. This simulator uses data from the National Health Interview Survey (NHIS)1 and

Surveillance, Epidemiology and End Results (SEER) -- Medicare linked database2. To
extrapolate the data beyond the original age--year box, generalized additive models (R
procedure {\em gam}) were used to smooth the data. A logistic regression model was
used for smoothing with the additive main effects of age and calendar year

represented by thin plate regression splines3. No interaction smooth terms were
specified. Shown in Figure_3b, below, is an estimate for the risks of first and
secondary PSA tests.

It is clear from the figure that the risk of secondary PSA test is several times higher the
one for the first test. This observation prompted the development of the two-stage
model for screening based detection described in Modeling Cancer Detection Through

Screening-B and4. Frequency of PSA testing by age increases initially as the man enters
the risk zone for prostate cancer. However for the older ages a decreasing pattern is
observed perhaps because of limited residual life expectancy and associated
diminishing relevance of detection of prostate cancer. Dissemination by calendar year
is different for the first and secondary tests. In men who have been screened at least
once the frequency increases as PSA is introduced into practice and the surface settles
at stable values in the nineties. The risk of getting the first test by calendar year shows
a spike in early nineties and settles at a lower level later showing a decreasing pattern
in the late nineties. This phenomenon deserves further study. The effect could be a
consequence of heterogeneity in people's acceptance of PSA testing. The group of men
showing compliance for PSA testing is dissipating with time as such men get tested
and leave the set of men "at risk" for the first test. Another explanation might be that
the recent decline in the frequency of new PSA tests is associated with a dissemination
of knowledge of various controversial issues surrounding screening for and treatment
of prostate cancer.

REFERENCES:
1 National Center for Health Statistics “National Health Interview Survey (NHIS).”

2004;
2 National Cancer Institute “Surveillance Epidemiology and End Results (SEER) -

Medicare linked database” 2002;
3 Wood, S. “Thin plate regression splines” in Journal of the Royal Statistical Society

Series B 2003; 65: : 95–114
4 Tsodikov, A., Szabo, A., Wegelin, J. “A population model of prostate cancer

incidence” in Statistics in Medicine 2006; 25: 16: 2846-2866
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SURVIVAL COMPONENT

SUMMARY
This document describes the survival component of the model.

OVERVIEW
The survival component is an analytic model that describes the relationship between a
set of covariates and a survival curve (alternatively a hazard function, a distribution of
time to failure, or a density).

DETAIL
The model yields differing survival curves depending on the following covariates.

• stage of cancer

• tumor grade

• calendar year of diagnosis

• age of patient

• therapy (the integration of this covariate into the model remains as future work.)

Here we present the main results. These results permit us to use composition to build
flexible semiparametric survival models (nonlinear transformation models) and use
them for estimation and hypothesis testing.

Nonlinear transformation models
Let be a parametrically specified distribution function with the --domain of

. Let be a nonparametrically specified baseline survival function. A
semiparametric regression survival model is called a Nonlinear Transformation Model
if its survival function can be represented as a composition

The NTM class and associated estimation procedures were developed by Tsodikov1.
The key requirement that ensures monotonicity and convergence of the estimation
algorithms (see Estimation Algorithm) is that of nondecreasing , where
where , , . Using frailty models
analogy, can be interpreted as a surrogate of the posterior risk for a subject
observed with an event at time , where =0 if right censored, =1 if failed.
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Model building by composition
If and are two different NT models with predictors , and , respectively, then

is a new semiparametric model with two predictors and . The fact that NTM--
generating functions are all defined on and have the range in the same
interval allows us to compose as complex a hierarchical model as needed. Moreover,
we proved that operation of composition preserves the key property of nondecreasing

observed in frailty models \citep{tsomodelbuilding}. We also derived a chain rule
that allows us to specify for the compound model based on --functions of the
submodels

As we will see in the next section, knowledge of is all that is needed to specify an
estimation procedure.

Estimation algorithm
Let be a set of times, arranged in increasing order, . Associated
with each is a set of subjects at risk, with covariates . For any function
, let , . The following method (QEM) is used to obtain
the profile likelihood.

where and are sequences of functions generated by the self-consistency
equation (Equation QEM), is the number of failures at , and is a vector of
regression coefficients.

It can be shown that if is nondecreasing, each update of using the self-consistency
equation (Equation QEM) strictly improves the likelihood, given . This guarantees
convergence of the sequence of likelihood values to the profile likelihood of

, and of the sequence to , the fixed point of (\ref{qem}), under fairly general
conditions.

Under a frailty model, the procedure (Equation QEM) is an EM algorithm based on
imputation of a missing predictor by its conditional expectation, given observed data,
represented by . Under an NT model, the procedure works as a Quasi-EM
algorithm without the missing-data interpretation.

Profile information matrix
To obtain confidence intervals and tests of statistical hypotheses for regression
coefficients, we developed a solution for the exact observed profile information matrix

of 2. As the number of parameters of a semiparametric model is potentially unlimited,
obtaining the inverse of the full information matrix becomes computationally
prohibitive, and a profile information matrix would be very useful. The profile
information matrix can be expressed as

where and
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for any two vectors and , where is a log-likelihood and is the fixed point of the
self-consistency equation. Notice that has dimension , with ,
therefore only a small matrix needs to be inverted in order to get an estimator of the
covariance matrix of regression coefficients. The downside of (\ref{ipr1}) is that since

is defined implicitly, so is the potentially large Jacobian matrix .
Therefore, the Jacobian is generally unavailable in a closed form. In the NTM case the
problem reduces to solving a system of linear equations , where
represents a column--vector of the Jacobian, is an diagonal matrix with
diagonal elements , , is a matrix, , ,

are real numbers, and be an -dimensional vector. The main result used to
obtain is as follows. Let the functions , be defined recursively
as , ,

. Now, let be the function given by . The solution to
the system of equations is the -dimensional vector ,
where .

RELEVANT ASSUMPTIONS
See Assumption Overview.

RELEVANT PARAMETERS
Recall that the term "parameter," in the language of this model profile environment,
actually refers to a model input.

The inputs to the survival model consist of data from the SEER (Surveillance,
Epidemiology and End Results) database, which includes approximately 350,000 men

diagnosed with cancer3. More information on these data may be found by clicking the
Details link in the footnote.

Each man's covariates (age, stage, grade, etc.) enter individually into the survival
model. In this, this survival model differs from the incidence model (see Incidence
Component).

RELEVANT COMPONENTS
The components of the survival model are results that allow us to build flexible
semiparametric survival models and use them for estimation and hypothesis testing.
Many of these results are new discoveries, developed under this project. Details may
be seen above, on this page.

DEPENDENT OUTPUTS
Mortality Component
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RELEVANT RESULTS
Methods. Advances were made in statistical methods in the development of this
component of the model. For more information, see the Relevant Components section
of this document.

Parameter estimates and prediction. The output of the Survival Component is
combined with the output of Incidence Component and used as input to the Mortality
Component, leading to predicted mortality and an estimate of the difference in
mortality that is due to the introduction of PSA testing. See results Age Adjusted
Incidence Mortality and Analysis Of Population Data.

REFERENCES:
1 Tsodikov, Alex “Semiparametric models: a generalized self-consistency approach” in

Journal of the Royal Statistical Society, Series B 2003; 65: : 759–774
2 Tsodikov, A., Garibotti, G. “Profile information matrix for nonlinear transformation

models” in Lifetime Data Analysis 2007; 13: 1: 139-159
3 National Cancer Institute “Surveillance Epidemiology and End Results (SEER) -

Medicare linked database” 2002;
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MORTALITY MODEL

THE MORTALITY MODEL
Let be the vector of clinical covariates observed at diagnosis. The results of Survival
Component allow us to study different survival models (s.f.), where is
the survival time post-diagnosis, is age at diagnosis, is calendar year of diagnosis,
and represents clinical covariates. We found that the proportional hazards model
does not provide a good fit for the data by stage and grade. The list of adequate

survival models for prostate cancer includes the PHPH cure model1,2 and the

proportional odds (PO) model4. We prefer the PO model with one linear predictor over
the PHPH cure model with two predictors by the AIC model selection criterion. A test
for the PO assumption vs. the PH assumption using the Gamma frailty model with
covariates in shape and scale parameters of the frailty distribution can be found in

Tsodikov2004. Confidence intervals for odds ratios of stage can be found in5.

In Incidence Model we presented a marginal model for cancer incidence by age and
year of diagnosis . The marginal p.d.f. for the -cohort, resulting from
this model can be partitioned into --specific fractions using a regression of on age
and year, , so that .

In practice, to specify we use a categorical effect of and define as a categorical
prognostic variable based on stage and grade. Cutpoints on PSA value and its velocity
at diagnosis can be used to extend . The period categorical variable associated with
serves as a surrogate of PSA utilization affecting --shift and within--stage shift of
survival with the introduction of PSA. We consider this approach preliminary in that it
only pertains to the actually observed utilization pattern and does not easily generalize
to hypothetical PSA impact scenarios (unlike the incidence model). As part of model
improvement in this competing continuation application we plan to provide a more
sophisticated link between the incidence and survival models that is necessary to
address the specific aims of this project.

Now, mortality in year at the age of , , where
and , is derived from the prostate cancer

specific survival function counted out from birth, represented by the following
convolution:

REFERENCES:
1 Tsodikov, A. “Semiparametric models of long- and short-term survival: An

application to the analysis of breast cancer survival in utah by age and stage” in
Statistics in Medicine 2002; 21: : 895–920

2 Tsodikov, A., Ibrahim, J.G., Yakovlev, A.Y. “Estimating cure rates from survival
data: An alternative to two-component mixture models” in Journal of the
American Statistical Association 2003; 98: : 1063–1078

3 Tsodikov, Alex “Semiparametric models: a generalized self-consistency approach” in
Journal of the Royal Statistical Society, Series B 2003; 65: : 759–774

4 Tsodikov, A. “Using composition to build semiparametric survival models” in
Statistical Modelling 2006; Submitted:

5 Tsodikov, A., Garibotti, G. “Profile information matrix for nonlinear transformation
models” in Lifetime Data Analysis 2007; 13: 1: 139-159
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University of Michigan
Mortality Model
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BASE CASE PSA
The base case PSA simulation program can be used to simulate life histories of the
times that individual men undergo PSA tests. The simulator is based on data from the

National Health Interview Survey1 and the Surveillance, Epidemiology and End

Results (SEER) -linked database2. The simulation is based on two submodels for the
"risk" of PSA test, both of which depend on age and calendar year. The first submodel
is a survival model for the time to first PSA test among men who have not yet had a
test. The second submodel is a non-homogeneous Poisson process model for the
schedule of subsequent PSA tests in men who have already had at least one PSA test.
For further information, see figure First PSAtest Secondary PSAtest.

REFERENCES:
1 National Center for Health Statistics “National Health Interview Survey (NHIS).”

2004;
2 National Cancer Institute “Surveillance Epidemiology and End Results (SEER) -

Medicare linked database” 2002;
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SEER_MEDICARE

REFERENCE
National Cancer Institute (2002), "Surveillance Epidemiology and End
Results (SEER) - Medicare linked database"

URL:
http://healthservices.cancer.gov/seermedicare/

NOTES AND DISCUSSION

The SEER data used in the current study consist of two parts:

• Population data: an age-by-year table with a count in each cell of the number of
men at risk for prostate cancer

• Survival data: one row for each patient, with several variables such as age at
diagnosis, stage, grade, and outcome

The data are available only from the following locations: San Francisco-Oakland,
Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah, and Atlanta. They
include all prostate cancer cases diagnosed in these regions, approximately 350,000
men.
CategoryReferences
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LIKELIHOOD IN THE INCIDENCE
MODEL
LIKELIHOOD IN THE INCIDENCE MODEL
Observed data for the incidence model include a count of people at risk of
cancer and a count of cancer cases by age and year. The conditional likelihood of
the data is built as a product of conditional probabilities of cancer detection given that
the subject is in the risk set for each combination from the observed box. Except for
terms that do not depend on the model parameters, the likelihood takes the form

Note that the same likelihood would result if we assumed that is Poisson distributed
with expectation and that represent independent random variables for
different pairs (which is not the case in Equation Likelihood). Maximum
likelihood inference is used to obtain point estimates and confidence intervals for the
model parameters entering . Maximization of the likelihood can be regarded as
minimizing a certain distance between the empirical incidence and its model-
based counterpart .
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HUMAN MORTALITY DATABASE

REFERENCE
Wilmoth, John R. (Director),Shkolnikov, Vladimir Shkolnikov (Co-
Director), (2003), "Human Mortality Database (HMD)."

URL:
http://www.mortality.org/

NOTES AND DISCUSSION
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INCIDENCE COMPONENT

SUMMARY
This document summarizes the incidence component of the model.

OVERVIEW
The incidence component is an analytic model for the time until prostate cancer
diagnosis of a randomly-selected man from the population at risk. This model is
expressed in terms familiar from survival analysis, and thus may be expressed as a
hazard function, a density, a cumulative distribution function, or a survival function. A
likelihood-based estimation procedure is part of this component.

DETAIL
The incidence model uses population data to estimate parameters that characterize
prostate cancer incidence as a function of age and calendar year.

RELEVANT ASSUMPTIONS
Please see Assumption Overview.

RELEVANT PARAMETERS
Recall that the term "parameter," in the language of this model profile environment,
actually refers to a model input. The inputs to the incidence model consist of data and
of parameters (in the statistical sense of the word) belonging to a model that has been
specified and estimated independently.

The incidence model currently uses data from nine areas of the United States: San
Francisco-Oakland, Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah,
and Atlanta. Before being used in the estimation procedure, the data are summarized
by age ( ) and calender year ( ).
The particular variables summarized by age and calendar year, and used as input to
the model, are:

• The number of men at risk for prostate cancer, for each age and calendar
year .

• The number of new prostate cancer cases, by age and calendar year ,
obtained by computing summaries from the SEER (Surveillance, Epidemiology

and End Results) database1.

In addition, the estimation procedure uses a prior estimate of the distribution of PSA
utilization in the population. This distribution is based on an algorithm that can be
used to simulate life histories of the times that individual men undergo PSA tests. For
more information see base Case PSA.

RELEVANT COMPONENTS

• Distribution of time until tumor onset (see Incidence Model)

• Duration of the latent disease stage (also called delay time), which is further
broken down into the following competing risks:
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◦ Risk of clinical diagnosis (see Incidence Model)

◦ Risk of screen-based diagnosis (see Modeling Cancer Detection Through
Screening)

(Other means of detection, such as TURP, are not currrently included in the
model.)

• Likelihood and estimation algorithm (see Likelihood In The Incidence Model)

DEPENDENT OUTPUTS
Mortality Component

RELEVANT RESULTS

• Predictions of incidence with and without PSA testing (see results Age Adjusted
Incidence Mortality), and consequently

• Estimation of the difference in incidence that is due to PSA testing.

REFERENCES:
1 National Cancer Institute “Surveillance Epidemiology and End Results (SEER) -

Medicare linked database” 2002;
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MORTALITY COMPONENT

SUMMARY
This document describes the mortality component of the model.

OVERVIEW
The Mortality Component yields estimates of mortality by calendar year, age, and
presence or absence of PSA testing.

DETAIL
See Mortality Model.

RELEVANT ASSUMPTIONS
See Assumption Overview.

RELEVANT PARAMETERS
Recall that the term "parameter," in the language of this model profile environment,
actually refers to a model input, not a parameter in the classical statistical sense.

The inputs to this component are the outputs of the Incidence Component and Survival
Component.

This component does not use population mortality data as input.

RELEVANT COMPONENTS

DEPENDENT OUTPUTS

RELEVANT RESULTS

• Predictions of prostate cancer-specific mortality with and without PSA testing (see
results Age Adjusted Incidence Mortality)

and consequently

• Estimation of the difference in mortality that is due to PSA testing.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

University of Michigan
Mortality Component

Page 158 of 201 All material © Copyright 2003-2009 CISNET



INCIDENCE FIGURE

Incidence Figure. Prostate cancer incidence (rate per person). Observed incidence of prostate
cancer is displayed on the left. This is a histogram empirical estimate obtained by dividing
incident cancer cases by the population at risk, for each age and each calendar year. Expected
incidence is displayed on the right, also by age and calendar year, as predicted by the model.
The model captures the basic pattern of prostate cancer incidence. The spike occurring with
the introduction of PSA testing gets more pronounced with increasing age, except in very old
men. The decrease in older men is a consequence of the fact that latent prevalence accumulates
with age.
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DEFINE LEAD TIME
Lead time refers to the amount by which detection of prostate cancer is advanced due
to PSA screening. It adds to the observed survival time even if early detection and
treatment were of no benefit. The lead-time effect targets patients who would still be
detected later without screening. This effect could result in apparently improved short-
term survival even if there were no mortality benefit.
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RESULTS OVERDIAGNOSIS LEAD
TIME

Estimates of lead time and overdiagnosis reveal the potential natural history of the
disease and of population screening exposure over the lifespan of an individual. These
parameters are estimated by birth cohort, and presented in Figure_5. Overdiagnosis
can be variously defined as a fraction of all detected cancers (the solid curve in the left
panel of Figure_5), or as a fraction merely of screen-detected cancers (the dashed
curve).

Recall that the horizontal axis represents the year of a man's fiftieth birthday, so that
older men are represented toward the left of each panel in Figure_5 and younger men
toward the right. In younger cohorts, more of the cohort life span falls in the PSA era.
This leads to a pattern of increasing lead time and increasing overdiagnosis among all
detected cancer patients as we move toward the right in each panel (solid curves). For
men entering the age risk zone for prostate cancer at the present time, the model
predicts about a six-year mean lead time and 25% overdiagnosis among all detected
patients.

Overdiagnosis in screen-detected cases is represented by the dashed curve in the left
panel. This must always be higher than the solid curve, because screen-detected cases
are a proper subset of all cancer cases and thus there is a smaller denominator in
computing the fraction. But in addition to being higher than the solid curve, the dashed
curve reveals a trend in the opposite direction. This can be understood as follows. Men
whose fiftieth birthday occurs in the 1950s were already very old in the PSA era. A
prostate cancer detected by screening in a man of this age has a high probability of
being overdiagnosed, because of his very small expected residual lifetime. In men who
are younger during the PSA era, on the other hand, the pool of screen-detected cases
include includes many cancers that would have surfaced clinically in the man's
residual lifetime if the man had not received a PSA test. These relevant cancers reduce
the proportion of overdiagnosed cancers in younger men. Overdiagnosis in screen-
detected cases settles at about 30% for men who reach their fiftieth birthday during the
PSA era.
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DEFINE OVERDIAGNOSIS
Overdiagnosis. A large proportion of prostate cancers identified through screening
would never be detected in the absence of screening. This phenomenon is called
overdiagnosis. Screening brings such cancers to the surface predominantly in the
localized stage of the disease, leading to an apparent "favorable" stage shift.
Overdiagnosis has multiple consequences. It leads to over-treatment of men who
would never be detected without screening. Also, it modifies apparent estimates of
post-treatment survival as over-diagnosed cases appear to be "cured." Injection of
overdiagnosed cases into the pool of all prostate cancer presentations at diagnosis
changes the distribution and the meaning of clinical covariates in men diagnosed with
prostate cancer in the PSA era. Overdiagnosis could lead to apparently improved long-
term survival of patients with localized stage of the disease even if there were no
mortality benefit.
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MEAN POSTERIOR DELAY TIME
MARGINAL INCIDENCE MODEL

Figure_8 shows an estimate of delay time computed from SEER data (Analysis Of Population
Data). Introduction of PSA testing is associated with earlier detection, and the older the man the
more so. The slight decrease in delay time in the no-PSA prediction is a transient process
resulting from freezing the pre-PSA trend estimates in the year 1988.

For more information on the model from which this estimate was obtained, see
Incidence Model.
For more information on delay time and its integration into the model, see
Delay_Time_Approach.
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WITHIN STAGE SHIFT BY DELAY
TIME

Figure_9 shows that the delay-time approach, developed in the current project,
captures within-stage-and-grade shift. It should be stressed that delay time was
computed without using survival data, and represents an independent significant
prognostic factor for post-treatment survival, particularly in the localized-regional.
These results can be compared with Figure_2, where a similar effect is expressed by
year of diagnosis. For estimates of delay time as a function of age and calendar year,
see Mean Posterior Delay Time Marginal Incidence Model. For more information on
the model from which these estimates were obtained, see Delay_Time_Approach.
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RESULTS AGE ADJUSTED
INCIDENCE MORTALITY

In Figure_6, model predictions are displayed for age-adjusted incidence and mortality,
along with their empirical estimates. To generate predictions in the counterfactual case
of no PSA testing, all trend functions were frozen at a constant in the year 1988, and
PSA sensitivity was set at zero. The mortality figure (right) indicates that the
introduction of the PSA test has led to a decline in mortality.

For a description of the data analysis that yielded these results, see Analysis Of
Population Data.

For a deeper understanding of the model components on which the results are based,
see Incidence Model and Mortality Model.
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ANALYSIS OF POPULATION DATA

ANALYSIS OF POPULATION DATA
The SEER database was used to obtain data on more than 350,000 cases of prostate
cancer diagnosed in nine areas of the United States (San Francisco-Oakland,
Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah, Atlanta) as well as
population count files corresponding to those cases. We use the modeling box
corresponding to age interval [50,85] and calendar year interval [1973-2000]. Age
distribution in the U.S. population in year 2000 for men over 50 is used as a standard
when age-adjusted characteristics are reported. Risk of death from other causes (used
in estimates of lead-time and overdiagnosis) was derived from the Human Mortality

Database1.

As shown in Figure_1, incidence of prostate cancer before the introduction of PSA

showed an increasing trend in calendar time reportedly related to TURPs2. In order to
model this effect, a linear trend was specified for the sojourn time model (Equation
LCDX) for the period 1973-1987, saturating in 1988. The parameter specifies the slope
of the trend during 1973-1987. We did not have a compelling evidence for changes in
the onset time distribution over time, and was removed from the model. Also, we
did not find any improvement in the fit from introducing a correlation between age at
onset and the sojourn time, and this term was removed from the model. PSA
sensitivity was specified as an increasing function of the time since tumor onset. When
fitting the model, the estimate settled at 100% sensitivity. Likelihood was maximized
by the Powell's method (Himmelblau1972) of conjugate directions. Confidence
intervals for the model parameters are based on Likelihood Ratio and inverting the
profile likelihood surface for each parameter. Estimates of key model parameters and
the corresponding confidence intervals are shown in Table_1.

Note that the estimated mean age at tumor onset goes well beyond the normal human
lifetime. This is a consequence of the fact that only a proportion of men would ever
develop prostate cancer in their life span. Shown in Figure_4 is a histogram empirical
estimate of prostate cancer incidence and its model--predicted
counterpart by age and calendar year.

The model captures the basic pattern of prostate cancer incidence. The spike effect in
the incidence occurring with the introduction of PSA gets more pronounced with age
except for very old people. This is a consequence of latent prevalence of the disease
accumulating with age. Shown in Figure_5 is an estimate of lead time and
overdiagnosis. Both notions relate to the potential natural history of the disease and
population screening exposure over the life span of an individual. Therefore we
represent them by birth cohort. Overdiagnosis can be measured as a fraction relative to
all detected cancers or to screen-detected cancers only. As we move the year of birth to
the right, more and more of the cohort life span falls on the PSA era. This leads to an
increasing pattern of lead time and overdiagnosis among all detected cancer patients
(solid curves). For men entering the age risk zone for prostate cancer at the present
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time, the model predicts about 6-year mean lead time and 25% overdiagnosis among
all detected patients. Interestingly, overdiagnosis in screen-detected cases is a
decreasing function of the birth year and settles at about 30% for the present era.
Initially for a person born in the fifties only older ages are affected by PSA utilization.
If detected at such an age, the case is very likely to be overdiagnosed. Indeed, if
screening were ignored the disease would have little chance to surface because of the
very small expected residual lifetime in older people. This is why the dashed curve in
Figure_5 (left) starts high. As we move the potential life history more and more under
the PSA exposure, the pool of screen-detected cases gets enriched with relevant cancers
that have advanced diagnosis due to PSA yet would surface clinically in their potential
residual lifetime if PSA were not applied. Since screen-detected cases represent a
subset of all cancer cases, overdiagnosis relative to screen-detected cases (the dashed
curve) is always higher than the one relative to all cancer cases (the solid curve).
Shown in Figure_6 are model predictions for age-adjusted incidence and mortality and
their empirical estimates. To generate predictions without PSA, all trend functions
were frozen at a constant in year 1988, and PSA sensitivity was set at zero. The
mortality figure (right) indicates that introduction of PSA test has led to mortality
decline. Explaining this effect and its partitioning into fractions attributable to early
detection and treatment is one of the emphases of this project.

The model was implemented in a prototype software package for Windows that brings
incidence, survival, mortality and other model blocks into a common GUI shell that
uses unified data input, output, menu and graphics structure. Shown in Figure_7 are
screen shots of the software.

REFERENCES:
1 Wilmoth, John R. (Director), Shkolnikov, Vladimir Shkolnikov (Co-Director),

“Human Mortality Database (HMD).” 2003;
2 Merrill, R.M., Feuer, E. J., Warren, J. L. , Schussler, N. , Stephensons, R. A. “Role of

transurethral resection of the prostate in population-based prostate cancer
incidence rates” in American Journal of Epidemiology 1999; 150: 8: 848-860
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TABLE_1
Parameter Legend Point Estimate 95% CI

Mean baseline sojourn time 18.558 (18.345, 18.775)

Shape sojourn time 1.541 (1.5191, 1.5644)

Slope of trend for sojourn time 0.09354 (0.09068, 0.09641)

Mean age past 50 at tumor onset 72.732 (72.498, 72.965)

Shape of age past 50 at tumor onset 1.6153 (1.6067, 1.6239)

Table_1. Estimates of model parameters and confidence intervals. Time and age are measured in
years.
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MODELING CANCER DETECTION
THROUGH SCREENING
MODELING CANCER DETECTION THROUGH SCREENING
Let be the survival function of the potential time to screen-based diagnosis
(SDx). This section is devoted to modeling this distribution.

For an arbitrary individual from the target population, consider the "risk" of getting his
first screen. Age at first screen may be regarded as a survival time with the
instantaneous risk represented by the hazard function that depends on age and
calendar year. An empirical histogram estimate for can be obtained by
dividing the number of subjects at the age of receiving their first screen in year by
the total number of person-years with no evidence of the disease in the cell. Of

course, this estimate is inconsistent unless the data are grouped1.

The probability of no screens by the age of , , is a survival function obtained by

integrating the hazard over a life line on the so-called Lexis diagram2:

Denote by the intensity of screening in subjects who have already had their
first screen. The fact that the subject has had his first PSA test may identify him as a
member of the group that enjoys a higher screening utilization for various reasons.
Therefore, is larger than , as we see in Figure_3.

Consider the unconditional probability that a subject is not diagnosed
by screening in the age interval , . Under the assumptions stated in our
Assumptions section, we have

where for any . The conditional probability of no screening diagnosis by the
age of , , takes the form

The first term in this equation addresses the possibility of no screens by the age of
. The second term addresses the situation when the first screen occurs before onset of
the disease at the age of and no diagnosis is achieved through secondary screens that
might happen in the age interval . The third term accumulates the probability
that cancer is missed at the first and secondary screens occurring after disease onset.
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OVER DIAGNOSIS
A large proportion of prostate cancers identified through screening would never be
detected in the absence of screening. This phenomenon is called overdiagnosis.
Screening brings such cancers to the surface predominantly in the localized stage of the
disease, leading to an apparent "favorable" stage shift. Overdiagnosis has multiple
consequences. It leads to over-treatment of men who would never be detected without
screening. Also, it modifies apparent estimates of post-treatment survival as over-
diagnosed cases appear to be "cured." Injection of overdiagnosed cases into the pool of
all prostate cancer presentations at diagnosis changes the distribution and the meaning
of clinical covariates in men diagnosed with prostate cancer in the PSA era.
Overdiagnosis would lead to apparently improved long-term survival of patients with
localized stage of the disease even if there were no mortality benefit.
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LENGTH BIAS
It has long been recognized that screening preferentially detects slower growing

tumors1. Slower growing tumors are likely to be associated with better prognosis.
Among other consequences, length-bias effect would lead to apparently worsened
survival of patients in distant stage under screening as compared to the unscreened
population. Indeed, the pool of advanced tumors detected in the unscreened
population is heterogeneous in terms of growth rates. With the introduction of
screening some of the would-be distant cases will be detected earlier in a localized
stage. These are likely to be the "best" slower growing fraction of the would-be distant
cases. As a result, cases missed by screening that are still detected with distant disease
under screening, show worse prognosis as compared to the unscreened population.

REFERENCES:
1 Zelen, M., Feinleib, M. “On the theory of screening for chronic diseases” in

Biometrika 1969; 56: : 601-614
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LEAD TIME
Lead-time measures an advance in the diagnosis of prostate cancer due to screening. It
adds to the observed survival time even if early detection and treatment were of no
benefit. The lead-time effect pertains to patients who would still be detected later
without screening. Lead-time would lead to apparently improved short-term survival
even if there were no mortality benefit.
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FIGURE_2

Figure_2. Within-stage shift. Prostate cancer specific survival by year of diagnosis and stage.
The trend reflects improvement of prognosis in localized disease and worsening of prognosis
in distant disease with dissemination of screening. Lead-time, length-bias and overdiagnosis
provide part of the explanation for the within-stage shift. Data from the Surveillance,
Epidemiology and End Results (SEER) database, National Cancer Institute.
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DELAY_TIME_APPROACH

LINKING INCIDENCE AND SURVIVAL: THE DELAY TIME APPROACH
on the level of the subject, age at cancer diagnosis and survival post-diagnosis as well
as cancer-specific lifetime are confounded by screening schedules. this confounding is
expressed through lead-time, length bias and stage- and within-stage shift (see
Modeling Cancer Detection Through Screening). As a consequence, as we discussed
earlier, subjects with different screening schedules will have different distributions of
age at diagnosis, and, clinical covariates being equal, they will still show different
survival (within-stage shift). We have shown preliminary evidence that within-stage
shift is a very significant effect in prostate cancer (Figure_2). The within-stage shift
effect is a consequence of heretogeneity in the latent natural history of the disease and
its strong effect on cancer detection processes. As a result, conditioning on different
screening histories, other things equal, selects different subsets of natural histories of
the disease. It then comes at no surprise that different natural histories are associated
with different prognosis. In population data, person-level screening schedules are
typically unavailable. Latent heterogeneity in the population data is much higher due
to the contribution of uncertainty in screening schedules. In our population model,
discussed in the Model Description above, the effect of screening on survival was
modeled through the observed stage-shift and the within-stage shift adjusted for
empirically through the categorized year of diagnosis variable. This allowed us to
make mortality prediction within the observed period of 1973-2000, including a no-
PSA predictive run performed by freezing all trend functions in 1988 and removing
PSA from the incidence model. In this project we plan to improve the predictive
potential of the model by linking population characteristics of interventions such as
utilization of PSA, TURPs, Treatment, etc., to survival through natural history
surrogates without using empirical variables such as year of diagnosis. This would
make predictions a function of utilization characteristics and enable long-term
predictions, optimization of interventions, unbiased assessment of treatment effects
from population data, and many other model applications discussed below.

Our approach to linking incidence and survival using population data will be based on
the concept of frailty. Conditional on the information available at diagnosis

1. Age at diagnosis, , year of diagnosis, ,

2. Clinical covariates observed at diagnosis, ;

3. Dissemination of interventions over calendar time (rates of PSA testing, TURPs),
,

we will derive the posterior distribution of the age at tumor onset . With the marginal
incidence model discussed in Incidence Model (we continue using the notation
introduced in this section), we have

where is the year of birth.

Delay time is the time interval from tumor onset to diagnosis, . We will use
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as a surrogate of the natural history of the disease as far as its effect on survival is
concerned. A frailty model will be formulated for survival with as a frailty variable.
The effect of early detection due to surveillance is expressed as decreasing . As a
result, the survival function post-diagnosis will be a functional of the distribution of .

In our first approach we will summarize the effect of on survival by using the
posterior mean delay time as a covariate for survival. Using a specific complete data
model for survival, given , say, a proportional hazards frailty model, may lead to
model misspecification. However, if we keep the form of the incomplete data
semiparametric survival model flexible, a model building procedure based on the data
will absorb such misspecification. This approach is more attractive than traditional
frailty modeling, since the choice of a complete data model is difficult to justify
anyway, because complete data are not available. Survival methodology developed in
our previous project (Survival Component) specifically addresses flexible model
building procedures and guarantees that inference procedures will be available for all
models constructed by these procedures.

Figure_8 shows mean posterior delay time (DT) (Equation Post Y) computed using the
marginal incidence model fit to SEER data (Analysis Of Population Data).

From the Figure_8 it is clear that introduction of PSA is associated with earlier
detection, and the older the person the more so. The slight decrease of DT in the no-
PSA prediction is a transient process resulting from freezing the pre-PSA trend
estimates in year 1988. Figure_9 shows that the DT approach captures the within--
stage--and--grade shift. It should be stressed that DT was computed without using
survival data and represents an independent significant prognostic factor for post-
treatment survival, particularly in localized/regional stage (compare with Figure_2
where a similar effect is expressed by year of diagnosis).

We will proceed as follows.

1. Identify a regression model of stage and grade ( ) at diagnosis
conditional on independent variables represented by year of birth , age at
tumor onset , and delay time . This is a regression model for ordered
categorical response. We will consider Proportional Odds and Continuation
Ratio models. If necessary, custom models will be developed specifically to
address this problem if the modelled effect proves to be non-standard. The PI
has experience developing models for ordered categorical data and an efficient

algorithm for statistical inference with general ordinal models1.

2. Using the marginal incidence model Incidence Model, obtain the joint
distribution of age and clinical covariates at diagnosis

. This will contribute to the refined stage- and
grade--specific incidence model block that does not use year of diagnosis as a
surrogate variable to model stage and grade shift. This block for is
obtained by integrating out .

University of Michigan
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3. Using the joint distribution , develop a model block for predicting
posterior mean age at tumor onset by extending (Equation Post Y) to include
information on stage and grade at diagnosis. This will improve prediction of DT
and the proportion of explained variation in post-treatment survival attributable
to the within stage shift.

4. Develop the procedure that will adjust survival time for known screening
utilization patterns.

Given a population sample of prostate cancer survival, the procedure will be organized
as follows.

1. With the stage- and grade--specific prostate cancer incidence model, obtain the
mean posterior DT for each subject in the survival sample.

2. Determine an adequate semiparametric model for survival data with covariates
represented by , and mean posterior DT. This would require a trial
and error loop through model building using composition techniques (Model
Building By Composition), fitting using the Quasi-EM algorithm (Estimation
Algorithm) and hypotheses testing using the profile information matrix (Profile
Information Matrix).

The significance of our DT approach is that it adjusts survival model for a complex
``early detection" confounder. In clinical trials, ignoring significant confounders leads
to underestimated treatment effects. With population data, straightforward estimation
of the treatment effect is biased since screening utilization is uncontrolled for, and
study design is retrospective without randomization. In this project the DT approach
serves two main purposes

1. An unbiased assessment of treatment effects with population (and generally
retrospective, nonrandomized) data (Aim Develop Unbiased Assessment Of
Treatment Effects).

2. Enables a model that can predict cancer mortality under arbitrary scenarios of
utilization of screening and treatment. This paves the way to partitioning
mortality into attributable fractions (Aim Study The Joint Effect Of Progress)
short- and long-term predictions of mortality trends (Aim Make Short And Long
Term Predictions), predicting the effects of cancer control strategies that have
never been used before, optimization of screening schedules (Aim Determine
Evaluate Optimal Screening Strategies), and addressing other specific aims of
this project.

University of Michigan
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We recognize that mean DT may not provide all of the necessary reduction in the
unexplained variation of survival. This will be evaluated by preserving year of
diagnosis variable in the model jointly with DT and assessing whether it is still
significant. If it turns out that the use of year of diagnosis for explanation of the within
stage shift is still necessary, we will extend the DT approach to include the variance of
the posterior delay time in addition to the mean and will develop an adjustment of
survival using both parameters (mean and variance). Also, as a better but more
computer intensive alternative, we will consider using a frailty model approach where
posterior distribution for the delay time is used for the frailty variable. The frailty
would then represent the uncertainty in the tumor onset given information available at
diagnosis in a functional way rather than by one or two surrogate parameters. If
necessary, year of diagnosis trend in addition to the DT-adjustment will be preserved
to cover yet unexplained variation of survival.

REFERENCES:
1 Tsodikov, Alexander “A Proportional Hazards Model Taking Account of Long-Term

Survivors” in Biometrics 1998; 54: 4: 1508-1516
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FIGURE_3B

Figure_3b. Risks of first and secondary PSA tests as estimated from the simulation
model by age and calendar year. Left: Proportion of never screened men at risk getting their
first PSA test. Right: Proportion of men screened at least once getting a secondary PSA test.

REFERENCES:
1 Tsodikov, A., Szabo, A., Wegelin, J. “A population model of prostate cancer

incidence” in Statistics in Medicine 2006; 25: 16: 2846-2866
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MODELING CANCER DETECTION
THROUGH SCREENING-B

Modelling cancer detection through screening

This section (from1) is devoted to modeling the distribution of potential time to screen-
based detection conditional on the year of birth and age at tumor onset .
It is a somewhat more detailed version of Modeling Cancer Detection Through
Screening.

For an arbitrary individual from the target population, consider the "risk" of getting the
first screen in his life. Age at first screen may be regarded as a survival time with the
instantaneous risk represented by the hazard function . Naturally, depends
on age of the person and the current calendar year . Generally, it is expected that

increases in starting with the year of PSA introduction. As a function of , it is
reasonable to expect that is increasing initially while the residual life
expectancy is still substantial and then decreasing for very old people. An empirical
histogram estimate for can be obtained by dividing the number of subjects at
the age of receiving their first screen in year by the total number of subjects with no
evidence of the disease in the cell. More precisely, we should count tests in the
interval and divide by , which results in the same estimate for the grouping

interval year. Note that this estimate is inconsistent unless the data are grouped2.

The evolution of an -birth cohort up to the age of can be represented as a line
connecting points , where , on the age by year plane called the Lexis

diagram3. The probability of no screens by the age of , , is a survival function
obtained by intergrating (accumulating) the hazard over the line

Denote by the intensity of screening in subjects who already had their first
screen. Generally, we expect to be larger than . Indeed, the fact that the subject
has had his first PSA test may identify him as a member of the group that is screened
more frequently for reasons such as easier access to secondary testing having done this
once already, favorable attitude towards screening in those who choose to have their
first test, doctor's recommendations for serial secondary screens following the first one,
etc.
The model for risk of diagnosis by cancer screening is based on the following
assumptions.

• The probability that a subject born in year who has never been screened by the
age of receives his first screen in the age interval is

.

• The probability that a subject born in year who has been screened at least once
by the age of receives a screen in the age interval is

. This assumption defines secondary screens as following a
non-homogeneous Poisson process in age with intensity .
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• The probability that a subject born in year , with the disease onset at the age of ,
screened at the age of is detected with cancer is

where is the sensitivity of screening, and is the age of tumor at the time of
testing. It is natural to specify as an increasing function.

It should be noted that the fact that violates the notion that the entire
screening schedule for a subject could be a realization of a non-homogeneous Poisson
process.

Consider the probability that a subject born in year , with onset of the
disease at the age of who has had his first screen by the age of is not diagnosed by
screening in the age interval , . Note that this is a probability of no event in
the interval for a non-homogeneous Poisson process in with intensity

thinned with probability . (We use
the notation for any .) The intensity of a Poisson process with intensity
thinned with probability is given by the product , so that with ,

If the interval in question is before onset, , then there is no diagnosis and
. If and , the time interval in where diagnosis is

possible starts at , so that is given by an expression similar to
(\ref{g2dxc}) with the lower limit in the integral set at . Summarizing, we have

where for any .
We are now equipped to derive the probability of no screening diagnosis by the age of

, conditional on year of birth and age at disease onset , where is time since
onset. We have

The first term in the above equation addresses the possibility of no screens by the age
of . The second term addresses the situation when the 1st screen occurs before
onset of the disease at the age of and no diagnosis is achieved through secondary
screens that might happen in the age interval . The third term accumulates the
probability that cancer is missed at the first and secondary screens occurring after
disease onset.
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EQUATION QEM
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FIGURE FIRST PSATEST
SECONDARY PSATEST

Risks (rate per person) of first and secondary PSA tests as estimated from the NIH
simulation model by age and calendar year. This simulator is based on data from the National
Health Interview Survey (NHIS) and Surveillance, Epidemiology and End Results (SEER) -
Medicare linked database (Seer_Medicare). Left: Proportion of never screened men at risk of
getting their first PSA test. Right: Proportion of men screened at least once getting a secondary
PSA test. Original simulated data were smoothed by a generalized additive model with a logit
link.

For more information see PSAscreening Model.
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FIGURE_5

Figure_5. Overdiagnosis (left) and lead-time (right) by birth cohort. Dashed line is the fraction
of overdiagnosis in screen-detected patients. Solid line (left) is the fraction of overdiagnosis in
all cancer patients.
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FIGURE_8

Figure_8. Mean posterior delay time by age and year of diagnosis with (A) and without (B)
PSA screening. Estimates from SEER data.
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FIGURE_9

Figure_9. Survival by mean posterior delay time (DT), stage (Localized/Regional, Distant) and
Grade (Well or Moderately (WM), Poorly or Undifferentiated (PU)). Estimates were obtained
from SEER data.
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FIGURE_6

Figure_6. Age-adjusted estimates of incidence (left) and mortality (right) in the presence of
PSA (red) and prediction of the no-PSA case (blue). Rates are given per person. Thick green
curves correspond to empirical estimates. Model-based predictions show overall mortality
while empirical estimate is for incidence-based mortality only for cases diagnosed between
1973 and 2000. The discrepancy in the mortality figure for years close to 1973 shows the effect
of prostate cancer cases prevalent in 1973.
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EQUATION LCDX
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FIGURE_4

Figure_4. Prostate cancer incidence (rate per person). Observed (left): Empirical estimate of
prostate cancer incidence computed by dividing incident cancer cases from the SEER database
by the population, for each age and calendar year. Expected (right): Model-predicted prostate
cancer incidence by age and calendar year.
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FIGURE_7

Figure_7. Screen shots of the prototype software package implementing the model.
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EQUATION POST Y

where is the year of birth.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

University of Michigan
Equation Post Y

Page 193 of 201 All material © Copyright 2003-2009 CISNET



AIM DEVELOP UNBIASED
ASSESSMENT OF TREATMENT
EFFECTS

To develop unbiased assessment of treatment effects from population data.

Readers Guide
Model Overview

Assumption Overview
Parameter Overview

Component Overview
Output Overview
Results Overview

Key References

University of Michigan
Aim Develop Unbiased Assessment Of

Treatment Effects

Page 194 of 201 All material © Copyright 2003-2009 CISNET



AIM STUDY THE JOINT EFFECT OF
PROGRESS

To study the joint effect of progress in treatment of prostate cancer and PSA utilization
on observed national incidence and mortality trends.
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AIM MAKE SHORT AND LONG
TERM PREDICTIONS

To make short- and long-term predictions of the trends in national incidence and
mortality under various scenarios of projected behavior of key determinants of
population processes.
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AIM DETERMINE EVALUATE
OPTIMAL SCREENING STRATEGIES

To determine and evaluate optimal screening strategies and predict their effect on
future national trends in prostate cancer incidence and mortality.
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NHIS
REFERENCE
National Center for Health Statistics (2004), "National Health Interview
Survey (NHIS)."

URL:
http://www.cdc.gov/nchs/nhis.htm

NOTES AND DISCUSSION
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