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READERS GUIDE

CORE PROFILE DOCUMENTATION
These topics will provide an overview of the model without the burden of detail. Each

can be read in about 5–10 minutes. Each contains links to more detailed information if

required.

Model Purpose

This document describes the primary purpose of the model.

Model Overview

This document describes the primary aims and general purposes of this modeling

effort.

Assumption Overview

An overview of the basic assumptions inherent in this model.

Parameter Overview

Describes the basic parameter set used to inform the model, more detailed

information is available for each specific parameter.

Component Overview

A description of the basic computational building blocks (components) of the model.

Output Overview

Definitions and methodologies for the basic model outputs.

Results Overview

A guide to the results obtained from the model.

Key References

A list of references used in the development of the model.
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MODEL PURPOSE

SUMMARY
This document provides an overview of the Fred Hutchinson Cancer Research Center

(FHCRC) multistage clonal expansion for esophageal adenocarcinoma (MSCE–EAC)

model with multiple scales, including the cell, crypt, clonal patch, tissue [normal,

Barrett's esophagus (BE), high grade dysplasia (HGD), and esophageal

adenocarcinoma (EAC)], individual, and population levels. The model combines an

age–dependent gastroesophageal reflux disease (GERD) component with multistage

cell kinetic rates that depend on birth cohort to fit US EAC incidence data. Both

likelihood–based and detailed multiscale spatial simulation methods are used for

analysis and prediction of EAC trends and effects of alternative screening and

treatment protocols.

PURPOSE
The purpose of the MSCE–EAC model is to serve as an effective tool for evaluating

EAC trends in the US population and the impact of possible interventions on

modifying future cancer trends. The model combines rigorous likelihood–based

estimation of cell kinetic rates that drive the cancer process with detailed spatial

simulation of the growth and extinction of premalignant and malignant clones to

evaluate the sensitivities of different biopsy and advanced endoscopic imaging

protocols and the potential benefits and harms of radio–frequency ablation or other

treatment methods.
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MODEL OVERVIEW

SUMMARY
The MSCE–EAC model provides a mathematical and computational framework for

multiscale modeling of the natural history of progression from normal esophageal

squamous epithelium to esophageal adenocarcinoma (EAC), and the impact of

alternative protocols for biopsy, imaging, and treatment.

PURPOSE
The purpose of the MSCE–EAC model is to provide insight into the biology and natural

history of progression and detection of EAC over many length and time scales,

beginning with models of fundamental processes represented at the cellular level.

The development of BE is recognized as an early step in progression to EAC, with an

enhanced risk for BE among individuals with gastroesophageal reflux disease (GERD)

symptoms. The model represents age–dependent development of weekly or more

frequent GERD symptoms, with transitions from both GERD and non–GERD pathways

to develop BE, two additional mutations or epigenetic changes for the initiation of HGD,

with clonal expansion of cells comprising HGD, malignant transformation, and a more

rapid clonal expansion process for EAC.

GERD incidence data were utilized to calibrate the model for age–dependent GERD

prevalence, and Surveillance Epidemiology and End Results (SEER) incidence data were

used for likelihood–based calibration of the remaining parameters of the multiscale EAC

progression model.

EAC incidence has increased approximately six–fold in the US since 1975, as reflected in

SEER data.1 These temporal trends were modeled by systematically applying flexible

period and cohort trends to the biological parameters of the MSEAC model, and using

likelihood methods for model comparison and selection of the best model fit to SEER

incidence.

To identify which biological parameters may be influenced by temporal trends, we

compared alternative models with period and/or cohort effects influencing GERD

development, the transition rate to BE, early mutation steps, growth of premalignant

lesions, malignant transformation, and clonal growth of the tumor. The best model fit

includes a sigmoidal (birth) cohort trend on both premalignant and malignant clonal

expansion (see Results Overview).

Spatial simulations of the growth of premalignant clones (identified with HGD) and

malignant tumors are mapped to represent two–dimensional localization and growth on

the BE segment of the esophageal surface (represented as a torus).

This spatial modeling component of the MSEAC model allows analysis of the probability

for biopsy sampling of HGD and preclinical EAC during screening, along with

symptomatic cancer detection. This framework is inherently 'multiscale' in that it bridges

the cellular scale with the population scale, allowing us to model physically the process

of endoscopic screening of BE patients for the presence of premalignant and preclinical

malignant lesions prior to the appearance of cancer symptoms and/or a cancer diagnosis.
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BACKGROUND
A clinically important component of the MSCE–EAC model is an underlying gender and

age–specific model of GERD prevalence, which is generally believed to increase the

relative risk for BE. Calibration of the GERD prevalence model utilized data from

incident GERD cases in a cohort of 1700 children and adolescents in the Health

Improvement Network (THIN) UK primary care database between 2000–2005,2 and

case–control data on adults with a first diagnosis of GERD in the UK General Practice

Research Database (GPRD), including 7451 cases and 10,000 controls.3

Data from Ruigomez, et al. (1,2)

Data from Ruigomez, et al. (1,2)

GERD was defined as heartburn and/or regurgitation experienced at least weekly in

these studies.2,3 Using this definition, we develop male and female GERD models with

GERD prevalence increasing in accordance with the data for age–specific GERD
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incidence.2,3 However, the models also include a parameter representing reversion rates

of GERD symptoms, allowing us to fit age–adjusted GERD prevalence between ages 40

to 85 to an approximate target of 20%, consistent with population–based studies of

GERD prevalence.4,5,6,7 We then use maximum likelihood methods to fit the data–driven

models above and generate simpler 3–parameter gender and age–specific GERD

prevalence models that represents an effective childhood/young adult transition rate to

GERD, a transition age, and an effective older adult transition rate to GERD. (See green

lines in Figures below).

Male GERD prevalence model

Female GERD prevalence model

Epidemiological studies indicate that most individuals with GERD do not develop BE,

but that GERD is a significant risk factor for BE but with differing estimates of relative

risk (RR) for BE given GERD ranging between 2–15%, and also depending on BE

segment length, frequency of GERD symptoms and other factors.8,9 A recent
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meta–analysis of 14 studies found an odds–ratio of at–least weekly GERD in relation to

long segment BE of 4.92, CI=(2.01–12.0), and no association with short segment BE.9

Another recent meta–analysis of 5 studies on the association of GERD with EAC found

an odds ratio of 4.92, CI= (3.92, 6.22).10

The model fits to SEER data allow prediction of the background transition rate to BE, and

thus BE prevalence is predicted by including GERD and non–GERD pathways, with

predictions of 1.5–5% BE prevalence for males for ages ranging between 40 and 85, and

between 0.5–1% for females. Population estimates of BE prevalence differ widely,11 but

given this uncertainty, the model predictions appear generally consistent with the range

of estimates in the studies.

SEER EAC incidence has increased roughly six–fold since 1975.1,12 To identify biological

parameters that may be influenced by temporal trends, we compared alternative models

with period and/or cohort effects influencing GERD development, the transition rate to

BE, early mutation steps, growth of premalignant lesions, malignant transformation, and

clonal growth of the tumor.

MODEL DESCRIPTION
The development of BE is recognized as an early step in progression to EAC, with an

enhanced risk for BE among individuals with gastroesophageal reflux disease (GERD)

symptoms. The model represents age–dependent development of weekly or more

frequent GERD symptoms, with transitions from both GERD and non–GERD pathways

to develop BE, two additional mutations or epigenetic changes for the initiation of HGD,

with clonal expansion of cells comprising HGD, malignant transformation, and a more

rapid clonal expansion process for EAC. The transition rate from normal to BE includes

a baseline rate for individuals without GERD and a faster rate for individuals with

GERD modeled as , where is the relative risk for BE given GERD.

(Calibration of models for GERD and BE prevalences is discussed below).

Age–dependent model of prevalence for GERD and Barrett's esophagus

Let be the probability of GERD at age , with

, being a three–parameter function that we fit

to GERD incidence data 2,3 and age–adjusted GERD prevalence, 4,5,6,7 as described in the

Background section.

We model the age–dependent exponential transition rate for conversion from normal

tissue to BE as

,

where is the relative risk for GERD given BE.

The density for BE onset times, and cumulative function for BE prevalance

are

,

and

, respectively.

As described in the Background section, different studies differ in their estimates of
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relative risk (RR) for BE given GERD.8,9,10 We use a consensus estimate of RR from these

studies in assuming a model relative risk of RR=5 for BE given GERD.

Model BE prevalence based on RR=5

We note that the primary MSCE–EAC model outcome is EAC and the model assumes BE

is necessary for EAC. Using the estimate of RR=5, we used maximum likelihood methods

to calibrate the MSCE–EAC model to EAC incidence data from SEER to estimate the

remaining model parameters.

BE is modeled as a metaplastic tissue with random segment length drawn from a beta

distribution 13containing on average 106 BE stem cells. These BE stem cells

may undergo mutation or epigenetic modification, with two successive hits occurring

during asymmetric cell division (at rates , ) that are required to inactivate a

gatekeeper or tumor suppressor gene (TSG) and generate a premalignant daughter cell

with partial loss of tissue homeostasis. (When calibrating to EAC incidence, and are

not separately identifiable, so without loss of generality we set ). Premalignant

cells, which we associate with high grade dysplasia (HGD) may divide (with rate ); die,

undergo apoptosis or differentiate (at rate ); or mutate during asymmetric cell division

(at rate ) to generate a malignant cell. Similarly, malignant cells may divide (with rate

); undergo apoptosis or differentiate (at rate ); or undergo detection through a

size–based stochastic observation process based on a per–cell detection rate .

The difference between the birth and death rates is called the net cell proliferation rate (

) for each cell type. Model parameters are calibrated through maximum likelihood fits to

EAC incidence data from nine registries of the Surveillance and End Results (SEER)

database between 1975 and 2010.1
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EAC incidence has increased approximately six–fold in the US since 1975.1,12 These

temporal trends were modeled by systematically applying flexible period and cohort

trends to the biological parameters of the MSCE–EAC model, and using likelihood

methods for model comparison and selection of the best model fit to SEER incidence. The

best fitting model includes a sigmoidal birth cohort effect modifying the growth rates of

premalignant and malignant cells, with rates for malignant growth significantly larger

than for premalignant growth. The sigmoidal shape for premalignant growth rate is

parametrized as shown in the following section.

Growth of premalignant (P—cells) modified by sigmoidal birth—cohort effect

Let represent the birth cohort, indexed by year .

NOTE: to keep notation simple in the following, we do not add the index to the

division rates or , net cell proliferation rates or , or death rates or

(where and represent premalignant and malignant cells, respectively.

,

,

Growth of malignant M—cells modified by sigmoidal birth—cohort effect

,

,

The analytic form of the sigmoidal function allows smooth estimation of future trends,

with projections until 2030 for males and females shown in the figures below. The figures

show that the six–fold increase in incidence can be explained by smaller changes in the

net cell proliferation rates of premalignant and malignant clones that increase less than

three–fold across birth cohorts spanning a century.

MSCE–EAC Model Differential Equations
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'

'

MSCE–EAC Model Likelihood

Maximum likelihood methods were used to fit to EAC incidence data from SEER for

ages 1 to 84 and calendar years 1975–2010.

The expected number of EAC cancers at age and period (calendar year) and birth

cohort is

, where is the number of person years of age and period , and

the birth–cohort specific hazard is .

The likelihood is

, where is the number of observed EAC cases for age and period

.

The best model fit includes a sigmoidal (birth) cohort trend on both premalignant and

malignant clonal expansion, with rates for malignant growth significantly larger than for

premalignant growth.
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Of particular note is the observation that the estimated increases in proliferation rates

among males are leveling off for recent birth cohorts but continue rising for recent

females birth cohorts.
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ASSUMPTION OVERVIEW

SUMMARY
We assume that EAC develops from BE through GERD and non–GERD pathways,

with subsequent steps described by a multistage cell–based model. The primary

calibration of cell kinetic parameters in the MSCE–EAC model is done though

maximum likelihood fits to SEER data. Only specific combinations of cell kinetic

parameters are identifiable from incidence data.

BACKGROUND
The model represents the transition from normal esophageal squamous tissue to

metaplastic BE tissue as a Poisson process with a rate that is higher for individuals

with GERD compared to individuals without GERD.

Following generation of a BE segment in some individuals, a multistage carcinogenesis

process is used to represent stochstic cellular processes of sequential mutation, clonal

expansion to generate hyperplastic tissue, further mutation to malignant status, clonal

growth of the malignant tissue, and detailed observation processes, including biopsy

sampling, and treatment, including radio–frequency ablation (RFA).

ASSUMPTION LISTING
1. The transition from normal squamous epithelium to BE tissue is a field effect with

a transition rate that depends on GERD status.

The normal to BE transition is modeled as a Poisson process with changing rates that

depends on GERD onset age. This approach is used to represent a 'field' effect

transition, in which a region (or field) of tissue makes the transition during a short

interval of time. This assumption appears consistent with available observational data

that suggests that BE tissue segments do not generally change significantly in size

subsequent to their first detection.

2. We use a three stage model with two rate–limiting mutations that occur prior to

premalignant clonal expansion, and a subsequent mutation that generates the

malignant phenotype.

The assumption of two initial mutations is consistent with the tumor suppressor

paradigm that requires two genetic or epigenetic changes to enter the premalignant

phase of carcinogenesis. This is in contrast to the two–stage clonal expansion (TSCE)

model that assumes a single mutation prior to clonal expansion. (The TSCE model has

a different asymptotic behavior for the hazard at very old ages that tends to plateau).

Earlier testing of TSCE versus three–stage models indicated that the three–stage

models provide better fits to the digestive–tract (esophageal, stomach, pancreatic, and

colorectal) cancers. Although models with more initial mutations are possible, a

mathematical analysis indicates that models with two or more mutations prior to

clonal expansion have nearly indistinguishable shapes when the product of the initial

mutations remain the same. However, if a larger number of initial mutations is

assumed, then the mutation rates are forced to become more rapid, and at some point

this becomes biologically implausible. These results provide the basis for use of the

three stage model.

3. We assume that cells in BE tissue progress independently along the pathway to

cancer through birth, death, and mutation processes
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Cells on the pathway to cancer are assumed to arise in the BE tissue and progress

independently through a stochastic birth, death, mutation, and observation processes

for both premalignant and malignant cells, as specified by a multistage model.

4. We assume each premalignant clone begins as low grade dysplasia (LGD), but as

the clone grows it may undergo a stochastic transition to become a high grade

dysplasia (HGD) clone.

Any of the premalignant cells in LGD or in HGD may undergo malignant

transformation, starting the growth of an Esophageal adenocarcinoma (EAC) clone.

The model simulates a transition from LGD to HGD using a transition rate that

increases in proportion to the number of premalignant cells in the clone. Thus an

individual with BE may have multiple clones of different size, some classified as LGD

and others as HGD, and EAC clone(s) may begin within any of the LGD or HGD

clones.

5. We assume that the number of stem cells in BE has a fixed value per unit area of

BE tissue, and that the first two mutations following BE onset occur at equal rates.

Only certain cell kinetic parameter combinations in the multistage model are

identifiable through fits to incidence. Identifiable combinations include the net cell

proliferation rate for premalignant cells, the product of the number of stem cells and

the first two mutation rates, and the product of the premalignant cell division rate and

the mutation rate of these cells to become malignant. Thus some assumptions are

required to specify non–identifiable parameters. In particular, we assume equality of

the first two mutation rates, and set the number of stem cells to values consistent with

the available literature. Cell division rates are only weakly identifiable, and were

initially set to biologically plausible values. These assumptions were tested through

secondary calibration using detailed spatial simulation methods to fit observations

from clinical biopsy outcomes, including number and size of LGD, HGD, and

pre–clinical EAC clones.

6. The cancer detection process in the multistage model is represented using a

stochastic observation process that assumes each cell contributes independently to

the detection probability, collectively leading to a size based detection probability.

This size–based observation process generally seems reasonable, as the detection

parameter rho can be adjusted to reflect the median size of tumor at detection.

However, the distributional properties of tumor size at detection may not be identical

to that seen in clinical practice.

7. Clones generated through the multistage process are assumed to occur at random

within the BE segment.

This assumption is necessary because multistage process itself does not include

information on the spatial location of clones, only the number and sizes of clones.

Simulated clones generated through the multistage process are placed at random on a

2–D surface sized to reflect the BE segment within the esophagus.

8. We assume that LGD, HGD, or EAC detection occurs when biopsied tissue

contains cell counts for LGD, HGD, or EAC that exceed specific threshold values.

The predicted biopsy detection process for LGD, HGD or EAC depends on the physical

size of clones and the assumed fraction of biopsy tissue required to make a positive

identification of HGD or EAC. Several parameters, including fraction of biopsy tissue

required for detection, the number of stem cells per unit area, and the division rate of

premalignant cells (a weakly identifiable parameter) were evaluated and compared

with clinical reports on the detection frequencies for finding HGD and EAC in BE
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patients.

9. We assume a per–cell detection probability for symptomatic EAC diagnosis of

.

This specifies that the median size of an EAC at symptomatic detection will contain

approximately cancer cells.
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PARAMETER OVERVIEW

SUMMARY
Most of the model parameters were estimated through maximum likelihood fits to

EAC incidence data from nine registries of the Surveillance, Epidemiology, and End

Results (SEER) database by single year of age (20 – 84) and calendar year (1975 – 2010).

However, some parameters must be fixed initially to achieve parameter identifiability.

BACKGROUND
Key biological parameter combinations may be deduced from the shape of the cancer

incidence curve, described mathematically by a hazard function. The incidence curve

may be broken into sections representing an exponential–then–linear character of the

multistage hazard function as a function of age at diagnosis.

PARAMETER LISTING OVERVIEW
The slope of the linear phase is and the growth parameter of the

exponential phase . However, the rates and cannot be estimated

separately because the slope depends on their product. Analogous to premalignant

growth, the malignant growth parameter . To identify the malignant

conversion rate and detection rate per cell, and respectively, it is necessary to fix

the cell division rates and . Although the product is mathematically

identifiable, we were not able to obtain stable estimates and therefore also fixed the

(per cell) cancer detection parameter , which corresponds to median

symptomatic detection of EACs when they contain approximately cancer cells

(see Assumption Overview).

We compared multiple models by fixing and detection rate to different values in

order to achieve reasonable mean sojourn times and tumor doubling times that are in

line with clinical data. In these Results, the EAC clinical detection rate per cell/

year, malignant cell proliferation rate stem cells in

an average 5 cm BE segment.

Maximum likelihood methods were used to estimate values for (reference

year), where birth cohort year, that best explain the temporal trends for EAC

incidence in terms of sigmoidal birth cohort trends affecting promotion:
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COMPONENT OVERVIEW

SUMMARY
The MSCE–EAC model includes six components, consisting of a model of symptomatic

gastroesophageal disease (sGERD), an analytic multistage clonal expansion model

hazard for BE and EAC incidence, a temporal trends component, a hybrid stochastic

simulation component, a biopsy screening module, and a radio–frequency ablation

(RFA) treatment module.

OVERVIEW
The sGERD component was calibrated to sGERD incidence data and age–adjusted

sGERD prevalence data from the US and UK to generate estimates of age–dependent

sGERD prevalence by gender. The sGERD prevalence influences the rate of transition

to BE, and more importantly, the premalignant clonal expansion rate (net growth rate

for high grade dysplasia, or HGD) in the multistage model. The multistage model

(MSCE–EAC) hazard was calibrated to EAC incidence in SEER, and describes the

biological process of transition to BE in the esophagus, and the multistage

carcinogenesis process culminating in EAC. The temporal trends component was used

to estimate the maximum likelihood period and birth–cohort trends affecting biological

processes, including onset of BE and premalignant promotion, for dates ranging from

1890–2010. The hybrid stochastic simulation component was used to provide

realizations of HGD and malignant clones in individuals as they age. The biopsy

screening module represents biopsy of HGD and malignant clones through quadrant

sampling using forceps, which is referred to as the Seattle Protocol. RFA treatment,

which is used in patients diagnosed with BE and HGD, is modeled using a module that

allows specific proportions of cells of different types to be eliminated during RFA

treatment, and then to assess the results on expected diagnoses of HGD and EAC

during subsequent years.

COMPONENT LISTING
sGERD component

We modeled gastroesophageal reflux disease (GERD) symptom prevalence at age ,

, based on data from Ruigomez, et al. for incidence (by 2–year age intervals) of

GERD symptoms (that occur weekly or more frequently) among children (n=1700), 1

and another study by Ruigomez, et al. 2 on incidence of weekly GERD symptoms

among adults (n=1996) with data provided in 10 year intervals.

We used maximum likelihood methods to fit parameters for a GERD prevalence model

separately for males and females, using a transition rate to GERD prevalence based on

the GERD incidence data and estimating a back–transition rate (representing recovery

from GERD) to fit an assumed 20% target rate for age–adjusted GERD prevalence

between ages 40–85. See GERD Model Component for further detail.

Analytic multistage clonal expansion (MSCE) model hazard component

Analytically construct the hazard function of the MSCE–EAC model which consists of

two stochastic processes: the random occurrence of BE and the multistage

carcinogenesis process arising in BE. Parameters were estimated using maximum

likelihood methods. Mathematically, the MSCE–EAC branching process' probability

density function (pdf) may be written as a convolution of the BE conversion density

(assumed to be exponential) and the MSCE model density after BE onset ( ) as
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. Further details are provided in the Model

Overview section.

Temporal trends component

This component was used to estimate the mechanistic role of symptomatic GERD

(sGERD) and other factors (OF) in driving the observed U.S. trends, and was

accomplished in two phases. Phase 1 focused on identifying important biological

mechanisms that are likely driving the observed EAC trends. Phase 2 focused on

understanding the mechanistic role of sGERD and OF in acting through the biological

processes identified in Phase 1 to drive EAC incidence. Both phases of model

development were informed by EAC incidence data from SEER, sGERD incidence data

from the UK, and US sGERD prevalence data. Separate multiscale models of EAC

incidence were built for all–race men and women. See Temporal Trends Component

for further detail.

Hybrid stochastic simulation component

The simulation begins with generation of individual BE onset times, BE segment

lengths for each patient (which determines the number of BE stem cells), and

generation of pre–initiated and initiated stem cells using Poisson rate–limiting

mutation with rate and , respectively. Initiated premalignant clones undergo

independent birth–death–mutation (b–d–m) processes that we simulate to track cell

count and times of malignant transformations. See Stochastic Simulation Component

for further detail.

Biopsy screening module

For simulations following the Seattle biopsy protocol, the BE segment can be visualized

as partitioned into identical rectangular sections, which we will call "biopsy quadrants"

with a single biopsy in the center of the quadrant. For example, an average BE segment

of length 5 cm and 7.5 cm circumference will have 12 biopsy quadrants, 3 levels of

length 5/3 cm with 4 quadrant biopsies each. Furthermore, we assume periodic

boundary conditions when placing clones in a random quadrant.

To account for different biopsy protocols, incompletely described histological methods,

and inter–observer variation of neoplasia grade, we present results from the

computational model for different levels of diagnostic sensitivity based on the

minimum number of neoplastic (premalignant/malignant) crypts within a simulated

biopsy specimen required for pathologic diagnosis of dysplasia/malignancy among BE

patients without prior diagnosis of EAC.

After a simulated screen of BE patients for detection of LGD, HGD, and preclinical

EAC at age , the MSCE–EAC model can be used to further simulate an intervention

such as an ablative treatment using radio frequency.

Radio–frequency ablation component

After a simulated screen of BE patients for detection of dysplasia and preclinical EAC

at age , the MSCE–EAC model can be used to further simulate an intervention such as

an ablative treatment using radio frequency. To replicate current practice with radio

frequency ablation (RFA), we first remove the prevalent EAC cases that were screen

detected at the index endoscopy and then simulate RFA treatment on positively

screened patients with dysplasia. The MSCE–EAC model can then be used to project
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the EAC incidence and age–specific prevalence of dysplasia into the future after an

ablative treatment. The ablation is assumed to curatively reduce all clonal populations

and the number of BE crypts by certain percentages as described in the following. As a

simple example, we consider the model's predictions after a single ablative treatment

when indicated by the presence of high grade dysplasia on future EAC incidence.

REFERENCES:
1 Ruigomez, A., Wallander, M. A., Lundborg, P., Johansson, S., Rodriguez, L. A. G.

“Gastroesophageal reflux disease in children and adolescents in primary care.”
in Scand J Gastroenterol 2010; 45: 2: 139-146

2 Ruigomez, A., Rodriguez, L. A. G., Wallander, M. A., Johansson, S., Graffner, H.,
Dent, J. “Natural history of gastro-oesophageal reflux disease diagnosed in
general practice” in Alimentary Pharmacology & Therapeutics 2004; 20: 7:
.751-60.
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OUTPUT OVERVIEW

SUMMARY
The model outputs range from estimated trends for incidence and mortality,

mechanistic factors driving these trends, simulations of biopsy based screening, and

treatment through radio–frequency ablation.

OVERVIEW
Outputs from the model include projections of incidence and mortality for US males

and females by birth cohort and calendar year, trends for symptomatic

gastroesophageal reflux disease (sGERD) in the US, biological parameters of the

multistage process that are driving EAC incidence, mechanistic influences of sGERD

and other factors (OF) over time, and detailed stochastic simulations of the multistage

clonal expansion process.

OUTPUT LISTING
Incidence and mortality trends

US male and female incidence and mortality trends for all–races and whites for males

and females – calibrated to SEER data between 1975 and 2010, and ages 20–84

sGERD trends

Trends for symptomatic gastroesophageal reflux disease (sGERD) in the US –

consistent with cross–sectional sGERD incidence and prevalence with longer term

trends estimated by fitting to SEER EAC incidence

Biological parameters of the multistage process that are driving EAC incidence

Estimated through maximum likelihood fits to SEER data

Mechanistic influences of sGERD and other factors (OF) over time

Fit through extensive maximum likelihood estimation (MLE) and Markov chain Monte

Carlo (MCMC) methods to fit SEER incidence data

Joint distribution of premalignant and malignant clones

Detailed stochastic simulations of the multistage clonal expansion process provide

explicit realizations of the joint distribution of premalignant and malignant clones

using parameters derived through maximum likelihood fitting to SEER incidence data

Costs and life years gained

A simulator of biopsy screening among males and females under different biopsy

screening protocols provides estimates of costs and life years gained through different

screening protocols.

Reduction or delay of LGD, HGD, and EAC

The simulator estimates the impact of radio–frequency ablation on reducing or

delaying the occurrence of LGD, HGD and EAC.
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RESULTS OVERVIEW

SUMMARY
Results from the model include estimates for rates and trends for biological processes

occurring during EAC carcinogenesis, sensitivities of biopsy protocols, and the impact

of radio–frequency ablation (RFA), including the effects of 'touch–up' treatments when

the initial treatment was not fully successful.

OVERVIEW
Results from the model include a study on how trends for symptomatic

gastroesophageal reflux disease (sGERD) and other factors (OF) in the US may

influence biological parameters of the multistage process to drive EAC incidence

trends.1 Similarly, the methods describing the detailed stochastic simulations of the

multistage clonal expansion process, and illustration of explicit realizations of the joint

distribution of premalignant and malignant clones and simulation of biopsy screening

and sensitivity for detection of HGD and EAC are currently under review in a separate

manuscript.

RESULTS LIST
Calibration of EAC incidence and incidence–based mortality to SEER data and

projection of trends to year 2030

Maximum likelihood methods were used to calibrate the FHCRC model to GERD

incidence data and SEER data. These methods provided excellent fits to the SEER data

for US incidence and incidence–based mortality for calendar years 1975–2010 and by

single–year birth cohorts. During model development, the FHCRC modeling group

compared different models using maximum likelihood methods, finding that the

premalignant clonal expansion rate differs significantly by birth cohort. The best fit to

the data was found using a sigmoidal birth cohort function influencing the

premalignant clonal expansion rate.2,3

The calibrated FHCRC model results indicate that there were 81,069 expected male

EAC deaths and 10,375 expected female deaths between 1991–2020. Incidence and

mortality trends were projected to year 2030 by utilizing birth–cohort specific

parameters, with separate projections for local, regional, and distant staged tumors.

These projections suggest that male incidence trends are continuing upward, but show

a marked flattening trend, reflecting a decreasing birth–cohort trend for later birth

cohorts. Trends for females also continue upward to 2030, but unlike for males, there is

no significant flattening of the projected trends. Projections of the FHCRC model to

2030 predict that there will be approximately 81,069 male EAC deaths and 10,375

female deaths between 2011–2030.2

The EAC sojourn time may differ by birth cohort

For the FHCRC model, the EAC sojourn time represents the time between appearance

of the first malignant cell that doesn't become extinct and the incidental detection of

EAC. (This differs from other CISNET models that estimate the time from smallest

clinically detectable lesion to EAC incidence). The birth cohort influence on the clonal

expansion rates directly influences the expected clonal extinction probability and the

expected EAC sojoun time. The FHCRC model predictions for EAC sojourn time range

from ~18 years for the 1900 birth cohort, to < 10 years for recent birth cohorts.
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Impact of symptomatic GERD and other factors on explining EAC trends

Biologically based modeling of the mechanistic impact of symptomatic GERD and

other factors in fitting to EAC incidence data and GERD incidence data suggests that at

most, ~16% of the observed 6–fold increase in EAC incidence between 1975 and 2009 is

attributable to GERD, with the remainder explained by other factors. The modeling

suggests that GERD influences the transition to BE, but more importantly, GERD

increases the rate of premalignant promotion. The other factors also appear to

primarily influence premalignant promotion.1

Dependence of HGD detection and the probability of missed malignancy on the

biopsy sampling sensitivity

Detailed simulation of biopsy sampling according to the Seattle protocol suggests that

the probability of detecting HGD depends strongly on the percent of biopsy tissue

used for analysis, with sensitivities for HGD ranging from ~2–9% for males with

sampling percentages ranging from 10–95%. For females, the probability of HGD

detection is lower, ranging from ~1–6% for biopsy sampling percentages ranging from

10–95%. The probability of missed malignancy during biopsy sampling ranges from

~20% with 10% biopsy sampling among males, and ~15% among females; to ~5% for

males and ~4% for females at 95% sensitivity.3

The predicted impact of ablation in reducing EAC depends on the cell types ablated

and the ablation efficiency

Detailed simulations of the lifetime impact of ablation on cumulative EAC incidence

was done assuming different scenarios for the efficacy of ablation, with sensitivity

analyses comparing elimination of 50%, 99%, and 100% of all cell types, only HGD

cells, or only malignant cells. The results indicate that ablation of 100% of HGD and

malignant cells delays the expected incidence curve by approximately seven years,

with smaller effects seen for less efficient ablation or ablation of selected cell types.4,5

REFERENCES:
1 Hazelton William D., Curtius Kit, Inadomi John M., Vaughan Thomas L., Meza

Rafael, Rubenstein Joel H., Hur Chin and Luebeck E. Georg. “The Role of
Gastroesophageal Reflux and Other Factors during Progression to Esophageal
Adenocarcinoma” in Cancer Epidemiology, Biomarkers and Prevention 2015;
24: : 1012-1023

2 Kong, C. Y., Kroep, S., Curtius, K., Hazelton, W. D., Jeon, J., Meza, R., Heberle, C. R.,
Miller, M. C., Choi, S. E., Lansdorp-Vogelaar, I., van Ballegooijen, M., Feuer, E.
J., Inadomi, J. M., Hur, C., Luebeck, E. G. “Exploring the Recent Trend in
Esophageal Adenocarcinoma Incidence and Mortality Using Comparative
Simulation Modeling.” in Cancer Epidemiol Biomarkers Prev 2014; 23: 6:
997-1006

3 Curtius, Kit, Hazelton WD, Jeon J, Luebeck EG “A multiscale model evaluates
screening for neoplasia in Barrett’s Esophagus.” in PLOS Computational
Biology 2015; 11: 5: e1004272

4 Heberle CR, Omidvari AH, Ali A, Kroep S, Kong CY, Inadomi JM, Rubenstein JH,
Tramontano AC, Dowling EC, Hazelton WD, Luebeck EG, Lansdorp-Vogelaar
I, Hur C “Cost-Effectiveness of Screening Patients with Gastroesophageal
Reflux Disease for Barrett’s Esophagus With a Minimally Invasive Cell
Sampling Device” in Gastroenterol Hepatol 2017; S1542-3565: 17: 30197-0

5 Kroep S, Heberle CR, Curtius K, Kong CY, Lansdorp-Vogelaar I, Ali A, Wolf WA,
Shaheen NJ, Spechler SJ, Rubenstein JH, Nishioka NS, Meltzer SJ, Hazelton
WD, van Ballegooijen M, Tramontano AC, Gazelle GS, Luebeck EG, Inadomi
JM, Hur C “Impact of Radiofrequency Ablation Treatment of Barrett’s
Esophagus on Esophageal Adenocarcinoma: A Comparative Modeling
Analysis.” in Clin Gastroenterol Hepatol 2017; 1542-3565: 17: 30019-8
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GERD MODEL COMPONENT

SUMMARY
Gastroesophageal Reflux Disease (GERD) Model

OVERVIEW
sGERD component

We modeled gastroesophageal reflux disease (GERD) symptom prevalence at age ,

, based on data from Ruigomez, et al. for incidence (by 2–year age intervals) of

GERD symptoms (that occur weekly or more frequently) among children (n=1700),1

and another study by Ruigomez, et al.2 on incidence of weekly GERD symptoms

among adults (n=1996) with data provided in 10 year intervals.

DETAIL
We used maximum likelihood methods to fit parameters for a GERD prevalence model

separately for males and females, using a transition rate to GERD prevalence based on

the GERD incidence data and estimating a back–transition rate (representing recovery

from GERD) to fit an assumed 20% target rate for age–adjusted GERD prevalence

between ages 40–85. We then found that we could achieve excellent fits to these data

by simplified (3 parameter) gender–specific models representing a (slower) transition

rate among children, a transition age, and an adult rate for acquiring weekly GERD

symptoms (See Model Overview).

BE prevalence can be estimated, via parameter , by fitting to SEER data and

fixing a value for relative risk , given the model for GERD prevalence as

described in the main text with the BE conversion rate,

REFERENCES:
1 Ruigomez, A., Wallander, M. A., Lundborg, P., Johansson, S., Rodriguez, L. A. G.

“Gastroesophageal reflux disease in children and adolescents in primary care.”
in Scand J Gastroenterol 2010; 45: 2: 139-146

2 Ruigomez, A., Rodriguez, L. A. G., Wallander, M. A., Johansson, S., Graffner, H.,
Dent, J. “Natural history of gastro-oesophageal reflux disease diagnosed in
general practice” in Alimentary Pharmacology & Therapeutics 2004; 20: 7:
.751-60.
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TEMPORAL TRENDS COMPONENT

SUMMARY
Esophageal Adenocarcinoma incidence has increased over six–fold in the U.S. since

1975.

OVERVIEW
This component was used to estimate the mechanistic role of symptomatic GERD

(sGERD) and other factors (OF) in driving the observed U.S. trends, and was

accomplished in two phases.

Phase 1 focused on identifying important biological mechanisms that are likely driving

the observed EAC trends.

Phase 2 focused on understanding the mechanistic role of sGERD and OF in acting

through the biological processes identified in Phase 1 to drive EAC incidence. Both

phases of model development were informed by EAC incidence data from SEER,

sGERD incidence data from the UK, and US sGERD prevalence data. Separate

multiscale models of EAC incidence were built for all–race men and women.

DETAIL
The Phase 1 model family was designed to identify biological mechanisms that may

potentially drive the observed EAC incidence trends. In these models, linear or

sigmoidal trends for cohort and/or period were applied to one or more biological

processes. Thus all individuals of a given age, period, birth cohort, and sex share the

same set of biological rates, but these rates may change with birth cohort and calendar

year.

The Phase 2 model family extended the Phase 1 models by stratifying the population

according to sGERD duration, and then evaluating the mechanistic role of sGERD and

OF acting on important biological mechanisms identified in Phase 1. In these Phase 2

models, linear or sigmoidal trends for cohort and/or period were applied to sGERD

and OF, which influence biological rates. Individuals of a given age, period, birth

cohort, and sex were stratified by decade of sGERD onset, with individuals in each

stratum modeled using baseline biological rates before acquisition of sGERD and

generally different rates after sGERD onset.
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STOCHASTIC SIMULATION
COMPONENT

SUMMARY
Carcinogenesis is represented using a multistage clonal expansion model, linking

cellular events (division, death, and mutation) to premalignant and malignant clonal

growth and cancer detection.

OVERVIEW
The stochastic simulation algorithm (SSA) is a mathematically exact method to follow

each event that occurs during a realization of a continuous time Markov chain

beginning with a single cell, using cell kinetic parameters fit to SEER incidence data

and other sources.

DETAIL
Considering an individual premalignant clone of size at time , we define the

intensity function vector for death/differentiation, malignant

transformation, and birth of new stem cell, where, over a short period of time , we

expect events of type to occur. Due to the Markovian property of the

process, we wait an exponential length of time until the next event occurs with

intensity . Once an exponential time to next

event is chosen, we jump to the neighboring state with probability ,

where is the component of the state change vector for the b–d–m

process. Fortunately, in the case of the clone process with constant rates, the

probabilities are constant with respect to the current state so we may

generate a number of events of the three types with probabilities

and cumulatively sum each step for the chosen

events to create a state vector {\it N}. Then we generate the exponential waiting

times of the process at once from an exponential with mean and

cumulatively sum these to arrive at a new later time .

The SSA works very well when cell count of the clone is small and the event

intensities are fluctuating quickly. In particular, our simulation benefits to use the

SSA for the beginning of a clone's growth from a single cell, when the probability of

extinction is high ( is only slightly smaller than ) and most clones are eliminated

after a small number of initial events. However, the SSA can become excruciatingly

slow when a clone becomes very large, i.e. contains a large number of stem cells.

Therefore, rather than simulating every event choice and time, we can employ an

accelerated but approximate procedure called the –leap method, first introduced by

Gillespie and others.1,2,3 The goal of this procedure is to advance the cell count by a

preselected time increment in contrast to the exponential time increments generated

in the SSA. To control the loss of accuracy with this approximation, the choice of

leap–size must satisfy the historically referenced "leap condition" which is large

enough that many events occur in that time, but nevertheless small enough that the

intensity function value is likely to change only "infinitesimally" as a consequence of

those events. To the extent that this condition is satisfied, the mathematical rationale in

replacing Markovian kinetics with Poisson kinetics 4 states that the number of times

each independent event will occur in the set time length can be approximated by a
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Poisson random variable with mean on the interval . For the ordinary

–leap scheme, we assign . Thus, we set the intensity of event

equal to the constant and we update the cell count vector

, where are independent Poisson variates with means .

When the stochastic simulation of P clones produces a malignant progenitor cell, an

independent birth–death–detection process for an clone begins also. This can occur

during anytime of surveillance and the malignant clones may employ the same

algorithm described above. Considering an individual malignant clone of size at

time , we define the intensity function vector for death/

differentiation, EAC detection, and birth of new stem cell. The times of events may

occur between screens and be counted as a spontaneous, interval detection of EAC.

REFERENCES:
1 Gillespie, Daniel T. “Exact stochastic simulation of coupled chemical reactions” in J

Phys Chem 1977; 81: : 2340–2361

2 Gillespie, Daniel T. “Approximate accelerated stochastic simulation of chemically
reacting systems” in The Journal of Chemical Physics 2001; 115: 4: 1716

3 Cao, Y.; Gillespie, D. T.; Petzold, L. R. “Efficient step size selection for the tau-
leaping simulation method” in The Journal of Chemical Physics 2006; 124: 4:
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